Publications

12 Results

Search results

Jump to search filters

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

Nature Communications

Lee, Jongmin; Ding, Roger; Christensen, Justin; Rosenthal, Randy R.; Ison, Aaron; Gillund, Daniel P.; Bossert, David; Fuerschbach, Kyle H.; Kindel, William; Finnegan, Patrick S.; Wendt, Joel R.; Gehl, Michael; Kodigala, Ashok; Mcguinness, Hayden J.E.; Walker, Charles A.; Kemme, Shanalyn A.; Lentine, Anthony; Biedermann, Grant; Schwindt, Peter D.

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.

More Details

A COLD ATOM INTERFEROMETRY SENSOR PLATFORM BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin; Mcguinness, Hayden J.E.; Soh, Daniel B.S.; Christensen, Justin; Ding, Roger; Finnegan, Patrick S.; Hoth, Gregory W.; Kindel, William; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matt; Gehl, Michael; Kodigala, Ashok; Siddiqui, Aleem; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron; Bossert, David; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles; De Smet, Dennis; Brashar, Connor L.; Berg, Joseph; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, Shanalyn A.; Schwindt, Peter D.; Biedermann, Grant

Abstract not provided.

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin; Biedermann, Grant; Mcguinness, Hayden J.E.; Soh, Daniel B.S.; Christensen, Justin; Ding, Roger; Finnegan, Patrick S.; Hoth, Gregory A.; Kindel, Will; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matt; Gehl, Michael; Kodigala, Ashok; Siddiqui, Aleem; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron; Bossert, David; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles; De Smet, Dennis; Brashar, Connor L.; Berg, Joseph; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, Shanalyn A.; Schwindt, Peter D.

Abstract not provided.

Design of wearable binoculars with on-demand zoom

Proceedings of SPIE - The International Society for Optical Engineering

Boye, Robert; Wolfley, Steven; Yelton, W.G.; Goeke, Ronald S.; Hunt, Jeffery P.; Ison, Aaron; Jared, Bradley H.; Pillars, Jamin R.; Saavedra, Michael P.; Sweatt, W.C.; Winrow, Edward G.

Sandia has developed an optical design for wearable binoculars utilizing freeform surfaces and switchable mirrors. The goals of the effort included a design lightweight enough to be worn by the user while providing a useful field of view and magnification as well as non-mechanical switching between normal and zoomed vision. Sandia's approach is a four mirror, off-axis system taking advantage of the weight savings and chromatic performance of a reflective system. The system incorporates an electrochromic mirror on the final surface before the eye allowing the user to switch between viewing modes. Results from a prototype of a monocular version with 6.6x magnification will be presented. The individual mirrors, including three off-axis aspheres and one true freeform, were fabricated using a diamond-turning based process. A slow-slide servo process was used for the freeform element. Surface roughness and form measurement of the freeform mirror will be presented as well as the expected impact on performance. The alignment and assembly procedure will be reviewed as well as the measured optical performance of the prototype. In parallel to the optical design work, development of an electrochromic mirror has provided a working device with faster switching than current state of the art. Switchable absorbers have been demonstrated with switching times less than 0.5 seconds. The deposition process and characterization of these devices will be presented. Finally, details of an updated optical design with additional freeform surfaces will be presented as well as plans for integrating the electrochromic mirror into the system. © 2013 SPIE.

More Details
12 Results
12 Results