Publications

Results 80001–80200 of 99,299

Search results

Jump to search filters

Merging spatially variant physical process models under an optimized systems dynamics framework

Lowry, Thomas S.; Tidwell, Vincent C.

The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution system (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.

More Details

Copy of An overview of pulse compression and power flow in the upgraded Z pulsed power driver

Savage, Mark E.; Maenchen, John E.; McDaniel, Dillon H.; Pasik, Michael F.; Pointon, Timothy; Owen, Albert C.; Seidel, David B.; Stoltzfus, Brian; Struve, Kenneth; Warne, Larry K.; Bennett, Lawrence F.; Woodworth, Joseph R.; Bliss, David E.; Clark, Waylon T.; Coats, Rebecca S.; Elizondo-Decanini, Juan M.; LeChien, Keith R.; Harjes, Henry C.; Lehr, Jane

Abstract not provided.

THz quantum cascade lasers for standoff molecule detection

Wanke, Michael C.; Lerttamrab, Maytee; Montano, Ines; Chow, Weng W.

Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

More Details

Fundamental Enabling Issues in Nanotechnology: Stress at the Atomic Scale

Foiles, Stephen M.; Hearne, Sean J.; Morales, Alfredo M.; Webb, Edmund B.; Zimmerman, Jonathan A.

To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also support the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g., continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in nanostructures and, eventually, integrated nanocomponents.

More Details

Computationally efficient Bayesian inference for inverse problems

Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.

Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

More Details

Shear flow on super-hydrophobic surfaces

Proposed for publication in the International Journal for Multiscale Computational Engineering.

Van Swol, Frank B.

Super-hydrophobic surfaces, which exhibit large contact angles, can give rise to slip flow of aqueous fluids. We present our work on shear flow of atomistic fluids over simple super-hydrophobic surfaces. Molecular dynamic simulations are employed to investigate the flow field of fluid between two parallel surfaces, one of which is moving. Exploring a range of fluid thermodynamic state points, we demonstrate the influence of fluid phase and structure near the surfaces on prevalence, and degree, of slip at the super-hydrophobic surface.

More Details

Measuring the maturity of a technology : guidance on assigning a TRL

Mitchell, John A.

This report provides guidance on how to assign a technology readiness level (TRL). The method proposed assists in assigning TRLs through a series of questions that focus on a set of unambiguous maturation metrics. This method is slightly biased towards the environment and approach to technology maturation at Sandia National Laboratories where customers and suppliers are in very close proximity to one another, allowing for supplier-customer interactions at a very early stage in technology development. The hope is that this report can serve as a practical guide to anyone trying to understand the maturity of a specific technology. Risk is reduced in system acquisition by selecting mature technologies for inclusion in system development. TRLs are used to assess the maturity of evolving technologies and therefore become part of an overall risk reduction strategy in system development.

More Details

Titanium cholla : lightweight, high-strength structures for aerospace applications

Gill, David D.; Atwood, Clinton J.; Robbins, Joshua; Voth, Thomas E.

Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

More Details

An aqueous route to [Ta6O19]8- and solid-state studies of isostructural niobium and tantalum oxide complexes

Anderson, Travis M.; Alam, Todd M.; Rodriguez, Mark A.

Tantalate materials play a vital role in our high technology society: tantalum capacitors are found in virtually every cell phone. Furthermore, electronic characteristics and the incredibly inert nature of tantalates renders them ideal for applications such as biomedical implants, nuclear waste forms, ferroelectrics, piezoelectrics, photocatalysts and optical coatings. The inert and insoluble nature of tantalates is not fundamentally understood; and furthermore poor solubility renders fabrication of novel or optimized tantalates very difficult. We have developed a soft chemical route to water-soluble tantalum oxide clusters that can serve as both precursors for novel tantalate materials and ideal models for experimental and computational approaches to understanding the unusually inert behavior of tantalates. The water soluble cluster, [Ta6O19]8- is small, highly symmetric, and contains the representative oxygen types of a metal oxide surface, and thus ideally mimics a complex tantalate surface in a simplistic form that can be studied unambiguously. Furthermore; in aqueous solution, these highly charged and super-basic clusters orchestrate surprising acid-base behavior that most likely plays an important role in the inertness of related oxide surfaces. Our unique synthetic approach to the [Ta6O19]8- cluster allowed for unprecedented enrichment with isotopic labels (17O), enabling detailed kinetic and mechanistic studies of the behavior of cluster oxygens, as well as their acid-base behavior. This SAND report is a collection of two publications that resulted from these efforts.

More Details

Fluorosilicone and silicone o-ring aging study

Bernstein, Robert

Fluorosilicone o-ring aging studies were performed. These studies examined the compressive force loss of fluorosilicone o-rings at accelerated (elevated) temperatures and were then used to make predictions about force loss at room temperature. The results were non-Arrhenius with evidence for a lowering in Arrhenius activation energies as the aging temperature was reduced. The compression set of these fluorosilicone o-rings was found to have a reasonably linear correlation with the force loss. The aging predictions based on using the observed curvature of the Arrhenius aging plots were validated by field aged o-rings that yielded degradation values reasonably close to the predictions. Compression set studies of silicone o-rings from a previous study resulted in good correlation to the force loss predictions for the fluorosilicone o-rings from this study. This resulted in a preliminary conclusion that an approximately linear correlation exists between compression set and force decay values for typical fluorosilicone and silicone materials, and that the two materials age at similar rates at low temperatures. Interestingly, because of the observed curvature of the Arrhenius plots available from longer-term, lower temperature accelerated exposures, both materials had faster force decay curves (and correspondingly faster buildup of compression set) at room temperature than anticipated from typical high-temperature exposures. A brief study on heavily filled conducting silicone o-rings resulted in data that deviated from the linear relationship, implying that a degree of caution must be exercised about any general statement relating force decay and compression set.

More Details

Systems analysis and futuristic designs of advanced biofuel factory concepts

Gupta, Vipin P.; Celina, Mathew C.; Thoma, Steven T.

The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

More Details

Alternative Liquid Fuels Simulation Model (AltSim)

Drennen, Thomas E.; Baker, Arnold B.

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

More Details

Effectiveness of epoxy staking of fasteners for space flight applications

Sandia journal manuscript; Not yet accepted for publication

The effectiveness of epoxy application for minimizing fastener loosening during service was investigated under varying conditions of vibrational and thermal loading. Statistically designed experiments were conducted to identify the best method of epoxy staking. Studies showed that epoxy application can provide satisfactory fastener locking under a variety of service conditions. In conclusion, it was found that: (i) Epon 828 epoxy provides superior fastener locking compared to 3M Scotch-Weld Epoxy 2216, (ii) Epoxy application around screw threads is more effective than application around screw head, and (iii) Abrading the plate surfaces with 180 grit SiC paper is not an effective or useful surface preparation technique.

More Details

Evaluation of Inter-Mountain Labs infrasound sensors : July 2007

Hart, Darren M.

Sandia National Laboratories has tested and evaluated three Inter Mountain Labs infrasound sensors. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Inter Mountain Labs (IML) infrasound sensor model SS. The results of this evaluation were only compared to relevant noise models; due to a lack of manufactures documentation notes on the sensors under test prior to testing. The tests selected for this system were chosen to demonstrate different performance aspects of the components under test.

More Details

Low inductance gas switching

Harjes, Henry C.; Elizondo-Decanini, Juan M.

The laser trigger switch (LTS) is a key component in ZR-type pulsed power systems. In ZR, the pulse rise time through the LTS is > 200 ns and additional stages of pulse compression are required to achieve the desired <100 ns rise time. The inductance of the LTS ({approx}500nH) in large part determines the energy transfer time through the switch and there is much to be gained in improving system performance and reducing system costs by reducing this inductance. The current path through the cascade section of the ZR LTS is at a diameter of {approx} 6-inches which is certainly not optimal from an inductance point of view. The LTS connects components of much greater diameter (typically 4-5 feet). In this LDRD the viability of switch concepts in which the diameter of cascade section is greatly increased have been investigated. The key technical question to be answered was, will the desired multi-channel behavior be maintained in a cascade section of larger diameter. This LDRD proceeded in 2 distinct phases. The original plan for the LDRD was to develop a promising switch concept and then design, build, and test a moderate scale switch which would demonstrate the key features of the concept. In phase I, a switch concept which meet all electrical design criteria and had a calculated inductance of 150 nH was developed. A 1.5 MV test switch was designed and fabrication was initiated. The LDRD was then redirected due to budgetary concerns. The fabrication of the switch was halted and the focus of the LDRD was shifted to small scale experiments designed to answer the key technical question concerning multi-channel behavior. In phase II, the Multi-channel switch test bed (MCST) was designed and constructed. The purpose of MCST was to provide a versatile, fast turn around facility for the study the multi-channel electrical breakdown behavior of a ZR type cascade switch gap in a parameter space near that of a ZR LTS. Parameter scans on source impedance, gap tilt, gap spacing and electrode diameter were conducted.

More Details
Results 80001–80200 of 99,299
Results 80001–80200 of 99,299