Publications

9 Results

Search results

Jump to search filters

Scalar filtered mass density functions in nonpremixed turbulent jet flames

Combustion and Flame

Drozda, Tomasz D.; Wang, Guanghua H.; Sankaran, Vaidyanathan S.; Mayo, Jackson M.; Oefelein, Joseph C.; Barlow, R.S.

Filtered mass density functions (FMDFs) of mixture fraction and temperature are studied by analyzing experimental data obtained from one-dimensional Raman/Rayleigh/LIF measurements of nonpremixed CH4/H2/N2 turbulent jet flames at Reynolds numbers of 15,200 and 22,800 (DLR-A and -B). The experimentally determined FMDFs are conditioned on the Favré filtered values of the mixture fraction and its variance. Filter widths are selected as fixed multiples of the experimentally determined dissipation length scale at each measurement location. One-dimensional filtering using a top-hat filter is performed to obtain the filtered variables used for conditioning. The FMDFs are obtained by binning the mass and filter kernel weighted samples. Emphasis is placed on the shapes of the FMDFs in the fuel-rich, fuel-lean, and stoichiometric intervals for the Favré filtered mixture fraction, and low, medium, and high values for the Favré filtered mixture fraction variance. It is found that the FMDFs of mixture fraction are unimodal in samples with low mixture fraction variance and bimodal in samples with high variance. However, the FMDFs of mixture fraction at the smallest filter size studied are unimodal for all values of the variance. The FMDFs of temperature are unimodal in samples with low mixture fraction variance, and either unimodal or bimodal, depending on the mixture fraction mean, in samples with high variance. The influence of the filter size and the jet Reynolds number on the FMDFs is also considered. © 2008 The Combustion Institute.

More Details

Large eddy simulation of swirling particle-laden flow in a model axisymmetric combustor

Proceedings of the Combustion Institute

Oefelein, Joseph C.; Sankaran, Vaidyanathan S.; Drozda, Tomasz D.

This paper focuses on the application of the large eddy simulation (LES) technique to a swirling particle-laden flow in a model combustion chamber. A series of calculations have been performed and compared directly with detailed experimental measurements. The computational domain identically matches the laboratory configuration, which effectively isolates effects related to dilute particle dispersion and momentum coupling. Results highlight the predictive capabilities of LES when implemented with the appropriate numerics, grid resolution (as dictated by the class of models employed) and well-defined boundary conditions. The case study provides a clearer understanding of the effectiveness and feasibility of current state-of-the-art models and a quantitative understanding of relevant modeling issues by analyzing the characteristic parameters and scales of importance. The novel feature of the results presented is that they establish a baseline level of confidence in our ability to simulate complex flows at conditions representative of those typically observed in gas-turbine (and similar) combustors. © 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Simulation of the effect of spatial fuel distribution using a linear-eddy model

SAE Technical Papers

Steeper, Richard R.; Sankaran, Vaidyanathan S.; Oefelein, Joseph C.

Prior HCCI optical engine experiments utilizing laser-induced fluorescence (LIF) measurements of stratified fuel-air mixtures have demonstrated the utility of probability density function (PDF) statistics for correlating mixture preparation with combustion. However, PDF statistics neglect all spatial details of in-cylinder fuel distribution. The current computational paper examines the effects of spatial fuel distribution on combustion using a novel combination of a 3-D CFD model with a 1-D linear-eddy model of turbulent mixing. In the simulations, the spatial coarseness of initial fuel distribution prior to the start of heat release is varied while keeping PDF statistics constant. Several cases are run, and as the initial mixture is made coarser, combustion phasing monotonically advances due to high local equivalence ratios that persist longer. The effect of turbulent mixing is more complex. For the case where the length scale of the initial distribution matches the integral length scale of turbulence, turbulent mixing leads to moderation of peak heat-release rate. The randomness of turbulence is captured in the simulation, and for the above case, cycle-to-cycle variation of the combustion is evident. In contrast, when the initial fuel distribution is significantly finer or coarser than the turbulence length scale, turbulent mixing does not affect combustion for two different reasons. For fine distributions, molecular diffusion alone homogenizes the fuel-air mixture prior to ignition, so turbulence adds nothing. For initial distributions that are coarse compared to the turbulence length scale, diffusion and turbulence are both ineffective at mixing, so again turbulence has a minimal effect on combustion.

More Details
9 Results
9 Results