Publications

14 Results

Search results

Jump to search filters

Power Tower Technology Roadmap and cost reduction plan

Kolb, Gregory J.; Ho, Clifford K.; Mancini, Thomas R.

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

More Details

Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report

Mancini, Thomas R.

Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.

More Details

Solar-Electric Dish Stirling System Development

Mancini, Thomas R.

Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

More Details

An overview: Component development for solar thermal systems

Mancini, Thomas R.

In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

More Details

Detail design of a 10.4-m stretched-membrane dish. Phase 2, Final report

Mancini, Thomas R.

This report describes efforts conducted under Tasks 3 and 4 of the second phase of the project to develop a single-element stretched-membrane dish concept to reduce the cost of a high-performance concentrating solar collector. We completed the detailed design for such a collector suitable to drive a 25-kWe Stirling motor generator. The design includes the collectors, optical element, the drive, and support systems. The aperture of the optical element was sized to provide the required energy to the engine based on test data and analytical models of the concentrator receiver, and engine. The design of the optical element was improved based on experience gained from the design, fabrication, and testing of several prototypes.

More Details

The doe solar thermal electric program

Intersociety Energy Conversion Engineering Conference, 1994

Mancini, Thomas R.

The Department of Energy’s Solar Thermal Electric Program is managed by the Solar Thermal and Biomass Power Division, which is part of the Office of Utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National Laboratories that support them.

More Details

The feasibility of testing NASA's SCAD concentrator on earth

Mancini, Thomas R.

NASA has proposed that the solar concentrator for the manned space station, referred to as the Solar Concentrator Advanced Development (SCAD) dish, undergo terrestrial testing prior to being deployed in space. Because reliable flight concentrator performance is so important, independent tests of the SCAD concentrator are needed to demonstrate the offset parabolic concept and validate the computer codes needed for predicting concentrator flux profile and power generating capability. This report documents the first phase of a three-phase project to test the SCAD concentrator on sun. The three phases of the project are (1) Feasibility of On-Sun Testing; (2) Detailed Design and Fabrication of Test Fixtures; and (3) Testing and Analysis of Results. The objectives of Phase 1 are to evaluate the feasibility of testing the concentrator on sun in a terrestrial environment and to determine the potential for accurately predicting its performance in space. The feasibility study includes: an evaluation of terrestrial structures to support and track the concentrator; an assessment of methods for protecting the concentrator from the environment when it is not on test; the selection of the most feasible support structure and protection system; an evaluation of the effects of terrestrial solar power levels and sunshapes on the verification of computer codes for predicting the on-orbit performance of the concentrator; the development of a preliminary test plan complete with procedures and instrumentation; and the development of schedule and cost estimates for Phases 2 and 3 of the project.

More Details

The DOE Solar Thermal Electric Program Concentrator Technology Project

Mancini, Thomas R.

The project comprises the development of concentrating solar collectors, heliostats and dishes, and the development of optical materials. Because the solar concentrator represents from 40 to 60% of the cost of a solar thermal electric system, the continued development of high-performance concentrators is very important to the commercial viability of these systems. The project is currently testing two large area heliostats, the SPECO 200 m{sup 2} heliostat and the ATS 150 m{sup 2} heliostat and also trying to reduce the cost of the heliostats through the development of stretched-membrane heliostats. Stretched-membrane heliostats are made by attaching thin metal membranes to the two sides of a circular, metal ring. A slight vacuum in the plenum between the two membranes is used to focus the heliostat. The optical surface is provided by a silver-acrylic film, ECP 305. A prototype 100 m{sup 2} commercial unit has been built and is currently being tested. Parabolic dish concentrators are under development for use on dish-Stirling electric systems. The state-of-the-art dish is the McDAC/SCE faceted glass concentrator. Because of the success of stretched-membrane technology for heliostats, the project applied the technology to parabolic dish development and is currently designing a near-term, faceted, stretched-membrane dish. The current thrust of the program in optical materials development is the development of a low-cost, high-performance, silver-acrylic film. 3M's ECP 305 has demonstrated substantial improvement over previous films in its resistance to corrosion, longer life. An experimental film, developed at SERI, has promise for further improving the lifetime of the ECP 305. The project is currently investigating solutions to the problem of separation between the silver and acrylic layers of the film in the presence of water.

More Details
14 Results
14 Results