Publications

Results 7801–7900 of 96,771

Search results

Jump to search filters

Sandia National Laboratories FY21 Progress Report

Aguirre, Brandon A.

The Energetic Neutrons campaign led by Sandia National Laboratories (SNL) had a successful year testing electronic devices and printed circuit boards (PCBs) under 14 MeV neutron irradiation at OMEGA. During FY21 Sandia’s Neutron Effects Diagnostics (NEDs) and data acquisition systems were upgraded to test novel commercial off-the-shelf and Sandia-fabricated electronic components that support SNL’s National Security mission. The upgrades to the Sandia platform consisted of new cable chains, sample mount fixtures and a new fiber optics platform for testing optoelectronic devices.

More Details

Thermal decoupling of deuterons and tritons during the shock-convergence phase in Inertial Confinement Fusion implosions

Kabadi, Neel; Adrian, Patrick; Simpson, Raspberry; Bose, Arijit; Sutcliffe, Graeme; Lahmann, Brandon; Parker, Cody; Pearcy, Jacob; Reichelt, Benjamin; Frenje, Johan; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Forrest, Chad; Glebov, Vladimir; Janezic, Roger; Mannion, Owen M.; Stoeckl, Christian; Betti, Riccardo; Welch, Liam; Srinivasan, Bhuvana; Sio, Hong; Sanchez, Jorge; Atzeni, Stefano; Eriksson, Jacob; Taitano, Will; Keenan, Brett; Anderson, Steven; Simakov, Andre; Chacon, Louis; Brian, Appelbe

Abstract not provided.

Exploring Explicit Uncertainty for Binary Analysis (EUBA)

Leger, Michelle A.; Darling, Michael C.; Jones, Stephen T.; Matzen, Laura E.; Stracuzzi, David J.; Wilson, Andrew T.; Bueno, Denis B.; Christentsen, Matthew; Ginaldi, Melissa; Laros, James H.; Heidbrink, Scott H.; Howell, Breannan C.; Leger, Chris; Reedy, Geoffrey E.; Rogers, Alisa N.; Williams, Jack A.

Reverse engineering (RE) analysts struggle to address critical questions about the safety of binary code accurately and promptly, and their supporting program analysis tools are simply wrong sometimes. The analysis tools have to approximate in order to provide any information at all, but this means that they introduce uncertainty into their results. And those uncertainties chain from analysis to analysis. We hypothesize that exposing sources, impacts, and control of uncertainty to human binary analysts will allow the analysts to approach their hardest problems with high-powered analytic techniques that they know when to trust. Combining expertise in binary analysis algorithms, human cognition, uncertainty quantification, verification and validation, and visualization, we pursue research that should benefit binary software analysis efforts across the board. We find a strong analogy between RE and exploratory data analysis (EDA); we begin to characterize sources and types of uncertainty found in practice in RE (both in the process and in supporting analyses); we explore a domain-specific focus on uncertainty in pointer analysis, showing that more precise models do help analysts answer small information flow questions faster and more accurately; and we test a general population with domain-general sudoku problems, showing that adding "knobs" to an analysis does not significantly slow down performance. This document describes our explorations in uncertainty in binary analysis.

More Details

Influence of Al location on formation of silver clusters in mordenite

Microporous and Mesoporous Materials

Rimsza, Jessica R.; Chapman, Karena W.; Nenoff, T.M.

Formation of zeolite supported Ag0 clusters depends on a combination of thermodynamically stable atomic configurations, charge balance considerations, and mobility of species on the surface and within pores. Periodic density functional theory (DFT) calculations were performed to evaluate how the location of Al in the mordenite (MOR) framework and humidity control Ag0 nanocluster formation. Four Al framework sites were studied (T1-T4) and the Al positions in the framework were identified by the shifts in the differential Al⋯Al pair distribution function (PDF). Furthermore, structural information about the Ag0 nanoclusters, such as dangling bonds, can be identified by Ag⋯Ag PDF data. For Ag0 formation in vacuum MOR structures with a Si:Al ratio of 5:1 with Al in the T1 position resulted in the most framework flexibility and the lowest Ag0 nanocluster charge, indicating the best result for formation of charge neutral nanoclusters. When water is present, Al in the T3 and T4 positions results in the formation of the smallest average Ag0 nanoclusters plus greater expansion of the O-T-O bond angle than in vacuum, indicating easier diffusion of the Ag0 nanoclusters to the surface. The presence of Al in 4-membered rings and in pairs indicates favorable MOR structures for formation of single Ag atoms, despite the existence of synthesis challenges. Therefore, Al in the T2 position is the least favorable for Ag0 nanocluster formation in both vacuum and in the presence of water. Al in the T1, T3, and T4 positions provides beneficial effects through framework flexibility and changes in nanocluster size or charge that can be leveraged for design of zeolites for formation of metallic nanoclusters.

More Details

High-fidelity wind farm simulation methodology with experimental validation

Journal of Wind Engineering and Industrial Aerodynamics

Laros, James H.; Brown, Kenneth B.; deVelder, Nathaniel d.; Herges, Thomas H.; Knaus, Robert C.; Sakievich, Philip S.; Cheung, Lawrence C.; Houchens, Brent C.; Blaylock, Myra L.; Maniaci, David C.

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.

More Details

Design Guidelines for Deployable Wind Turbines for Military Operational Energy Applications

Naughton, Brian T.; Jimenez, Tony; Preus, Robert; Summerville, Brent; Whipple, Bradley; Reen, Dylan; Gentle, Jake; Lang, Eric

This document aims to provide guidance on the design and operation of deployable wind systems that provide maximum value to missions in defense and disaster relief. Common characteristics of these missions are shorter planning and execution time horizons and a global scope of potential locations. Compared to conventional wind turbine applications, defense and disaster response applications place a premium on rapid shipping and installation, short-duration operation (days to months), and quick teardown upon mission completion. Furthermore, defense and disaster response applications are less concerned with cost of energy than conventional wind turbine applications. These factors impart design drivers that depart from the features found in conventional distributed wind turbines, thus necessitating unique design guidance. The supporting information for this guidance comes from available relevant references, technical analyses, and input from industry and military stakeholders. This document is not intended to be a comprehensive, prescriptive design specification. This document is intended to serve as a written record of an ongoing discussion of stakeholders about the best currently available design guidance for deployable wind turbines to help facilitate the effective development and acquisition of technology solutions to support mission success. The document is generally organized to provide high-level, focused guidance in the main body, with more extensive supporting details available in the referenced appendices. Section 2 begins with a brief qualitative description of the design guidelines being considered for the deployable wind turbines. Section 3 provides an overview of the characteristics of the mobile power systems commonly used in U.S. military missions. Section 4 covers current military and industry standards and specifications that are relevant to a deployable wind turbine design. Section 5 presents the deployable turbine design guidelines for the application cases.

More Details

Alpha Spectrometry Results for Groundwater Samples Collected in Northern Iraq and a Summary of the Environmental Setting of the Adaya Burial Site

Copland, John R.; Farrar, David R.; Osborn, Douglas M.

The Radiation Protection Center (RPC) of the Iraqi Ministry of Environment continues to evaluate the potential health impacts associated with the Adaya Burial Site, which is located 33 kilometers (20.5 miles) southwest of Mosul. This report documents the radiological analyses of 16 groundwater samples collected from wells located in the vicinity of the Adaya Burial Site and at other sites in northern Iraq. The Adaya Burial Site is a high-risk dump site because a large volume of radioactive material and contaminated soil is located on an unsecure hillside above the village of Tall ar Ragrag. The uranium activities for the 16 water samples in northern Iraq are considered to be naturally occurring and do not indicate artificial (man-made) contamination. With one exception, the alpha spectrometry results for the 16 wells that were sampled in 2019 indicate that the water quality concerning the three uranium isotopes (Uranium-233/234, Uranium-235/236, and Uranium-238) was acceptable for potable purposes (drinking and cooking). However, Well 7 in Mosul had a Uranium-233/234 activity concentration that slightly exceeded the World Health Organization guidance level. Eight of the 16 wells are located in the villages of Tall ar Ragrag and Adaya and had naturally occurring uranium concentrations. Wells in the villages of Tall ar Ragrag and Adaya are located near the Adaya Burial Site and should be sampled on an annual schedule. The list of groundwater analytes should include metals, total uranium, isotopic uranium, gross alpha/beta, gamma spectroscopy, organic compounds, and standard water quality parameters. Our current understanding of the hydrogeologic setting in the vicinity of the Adaya Burial Site is solely based on villager's domestic wells, topographic maps, and satellite imagery. To better understand the hydrogeologic setting, a Groundwater Monitoring Program needs to be developed and should include the installation of twelve groundwater monitoring wells in the vicinity of Tall ar Ragrag and the Adaya Burial Site. Characterization of the limestone aquifer and overlying alluvium is needed. RPC should continue to support health assessments for the villagers in Tall ar Ragrag and Adaya. Collecting samples for surface water (storm water), airborne dust, vegetation, and washway sediment should be conducted on a routine basis. Human access to the Adaya Burial Site needs to be strictly limited. Livestock access on or near the burial site needs to be eliminated. The surface-water exposure pathway is likely a greater threat than the groundwater exposure pathway. Installation of a surface-water diversion or collection system is recommended in order to reduce the potential for humans and livestock to come in contact with contaminated water and sediment. To reduce exposure to villagers, groundwater treatment should be considered if elevated uranium or other contaminants are detected in drinking water. Installing water-treatment systems would likely be quicker to accomplish than remediation and excavation of the Adaya Burial Site. The known potential for human exposure to uranium and metals (such as arsenic, chromium, selenium, and strontium) at the Adaya Burial Site is serious. Additional characterization , mitigation, and remediation efforts should be given a high priority.

More Details

Physical Protection Recommendations for Small Modular Reactor Facilities

Evans, Alan S.

This recommendation document will provide international partners insight on physical protection systems (PPSs) for small modular reactors (SMRs). SMRs create many unique challenges for physical protection that must be addressed in design and implementation. This document will attempt to highlight possible challenges of SMRs and identify potential physical protection recommendations to mitigate these challenges. These recommendations are based on hypothetical SMR facilities and PPSs and their effectiveness against hypothetical adversaries.

More Details

Simultaneous Imaging of Molecular Rovibrational Nonequilibrium, Reactive Species, and Electric Field for Plasma-Assisted Chemistry

Kliewer, Christopher J.; Vorenkamp, Madeline; Ju, Yiguang

The Sandia-PRF has built a new capability for the low-temperature plasma community for the simultaneous imaging of molecular rotation/vibration nonequilibrium, electric field, and the distribution of OH radical and formaldehyde in reactive low temperature plasma systems. The system is currently investigating the plasma-assisted deflagration to detonation transition in a micro-combustor channel.

More Details

Soot Predictions with a Laminar Flamelet Combustion Model in SIERRA/Fuego on a Coflow Scenario

Kurzawski, Andrew K.; Hansen, Michael A.; Hewson, John C.

This report describes an assessment of flamelet based soot models in a laminar ethylene coflow flame with a good selection of measurements suitable for model validation. Overall flow field and temperature predictions were in good agreement with available measurements. Soot profiles were in good agreement within the flame except for near the centerline where imperfections with the acetylene-based soot-production model are expected to be greatest. The model was challenged to predict the transition between non-sooting and sooting conditions with non-negligible soot emissions predicted even down to small flow rates or flame sizes. This suggests some possible deficiency in the soot oxidation models that might alter the amount of smoke emissions from flames, though this study cannot quantify the magnitude of the effect for large fires.

More Details

Transmitted wave measurements in cold sprayed materials under dynamic compression

McCoy, C.A.; Branch, Brittany A.; Vackel, Andrew V.

Spray-formed materials have complex microstructures which pose challenges for microscale and mesoscale modeling. To constrain these models, experimental measurements of wave profiles when subjecting the material to dynamic compression are necessary. The use of a gas gun to launch a shock into a material is a traditional method to understand wave propagation and provide information of time-dependent stress variations due to complex microstructures. This data contains information on wave reverberations within a material and provides a boundary condition for simulation. Here we present measurements of the wavespeed and wave profile at the rear surface of tantalum, niobium, and a tantalum/niobium blend subjected to plate impact. Measurements of the Hugoniot elastic limit are compared to previous work and wavespeeds are compared to longitudinal sound velocity measurements to examine wave damping due to the porous microstructure.

More Details

Laser-Direct-Drive Cryogenic Implosion Performance on OMEGAVersus Target and Laser-Spot Radius

Thomas, Cliff; Theobald, Wolfgang; Knauer, James; Stoeckl, Christian; Collins, Tim; Goncharov, Valeri; Betti, Riccardo; Campbell, Michael; Anderson, Ken; Bauer, Katelynn; Cao, Duc; Craxton, Steve; Edgell, Dana; Epstein, Reuben; Forrest, Chad; Glebov, Vladimir; Gopalaswamy, Varchas; Igumenshchev, Igor; Ivancic, Steve; Jacobs-Perkins, Doug; Janezic, Roger; Joshi, Tirtha; Kwiatkowski, Joseph; Lees, Aarne; Mannion, Owen M.; Marshall, Fred; Michalko, Michael; Mohamed, Zaarah; Patel, Dhrumir; Peebles, Jonathan; Radha, Bahukutumbi; Regan, Sean; Rinderknecht, Hans; Rosenberg, Michael; Sampat, Siddharth; Sangster, Thomas; Shah, Rahul; Baker, Kevin; Kritcher, Andrea; Tabak, Max; Herrmann, Mark; Christopherson, Allison

Abstract not provided.

Development of the MARZ platform (Magnetically Ablated Reconnection on Z) to study astrophysically relevant radiative magnetic reconnection in the laboratory

Myers, Clayton E.; Hare, Jack; Ampleford, David A.; Aragon, Carlos A.; Chittenden, Jeremy; Colombo, Anthony P.; Crilly, Aidan; Datta, Rishabh; Edens, Aaron E.; Fox, Will; Gomez, Matthew R.; Halliday, Jack; Hansen, Stephanie B.; Harding, Eric H.; Harmon, Roger L.; Jones, Michael J.; Jennings, Christopher A.; Ji, Hantao; Kuranz, Carolyn; Lebedev, Sergey; Looker, Quinn M.; Melean, Raul; Uzdensky, Dmitri; Webb, Timothy J.

Abstract not provided.

Electrical conductivity of porous binary powder mixtures

Mechanics of Materials

Cooper, Marcia A.; Erikson, William W.; Oliver, Michael S.

Simultaneous data of the quasi-static compaction and electrical conductivity of porous, binary powder mixtures have been collected as a function of bulk density. The powder mixtures consist of a metal conductor, either titanium or iron, an insulator, and pores filled with ambient air. The data show a dependency of the conductivity in terms of relative bulk density and metal volume fraction on conductor type and conductor particle characteristics of size and shape. Finite element models using particle domains generated by discrete element method are used to simulate the bulk conductivity near its threshold while the general effective media equation is used to model the conductivity across the compression regime.

More Details

Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis (V.6.16 User's Manual)

Adams, Brian H.; Bohnhoff, William J.; Dalbey, Keith R.; Ebeida, Mohamed S.; Eddy, John P.; Eldred, Michael S.; Hooper, Russell W.; Hough, Patricia D.; Hu, Kenneth T.; Jakeman, John D.; Khalil, Mohammad; Maupin, Kathryn A.; Monschke, Jason A.; Ridgway, Elliott M.; Rushdi, Ahmad A.; Seidl, Daniel T.; Stephens, John A.; Swiler, Laura P.; Laros, James H.; Winokur, Justin G.

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

Mechanical characterization of low modulus polymer-modified calcium-silicate-hydrate (C–S–H) binder

Cement and Concrete Composites

Starr, J.; Soliman, E.M.; Matteo, Edward N.; Dewers, Thomas D.; Stormont, J.C.; Reda Taha, M.M.

Calcium-silicate-hydrate (C–S–H) represents a key microstructural phase that governs the mechanical properties of concrete at a large scale. Defects in the C–S–H phase are also responsible for the poor ductility and low tensile strength of concrete. Manipulating the microstructure of C–S–H can lead to new cementitious materials with improved structural performance. This paper presents an experimental investigation aiming to characterize a new synthetic polymer-modified synthetic calcium-silicate-hydrate (C–S–H)/styrene-butadiene rubber (SBR) binder. The new C–S–H/SBR binder is produced by calcining calcium carbonate and mixing this with fumed silica (SiO2), deionized water and SBR. Mechanical, physical, chemical and microstructural characterization was conducted to measure the properties of new hardened C–S–H binder. Results from the experimental investigation demonstrate the ability to engineer a new C–S–H binder with low elastic modulus and improved toughness and bond strength by controlling the SBR content and method of C–S–H synthesis. The new binder suggests the possible development of a new family of low-modulus silica-polymer binders that might fit many engineering applications such as cementing oil and gas wells.

More Details

Gimballed Tracking Mount Pointing Angle Qualification

Miller, Timothy J.; Tashiro, Jonathan T.; Stovall, Kevin M.; Frederick, Donald J.; Watts, Glen W.; Crowder, Richard C.

Tonopah Test Range (TTR), in support of its testing mission and modernization effort acquired a fleet of new gimballed tracking mounts (GTMs) manufactured by BAE Systems. The new GTMs can be operated remotely during flight tests and provide near real-time target tracking data. Furthermore, test vehicle Time-Space-Position-Information (TSPI) is evaluated using post-test synchronized imagery and pointing angle measurements acquired from each tracking mount. To comply with the Nuclear Enterprise Assurance Program (NEAP), all measurements devices must be certified. In keeping with the NEAP program, qualification of the new GTMs have been assessed to confirm that their pointing angle measurements produce acceptable TSPI results. This study only evaluated the four GTMs as a stand-alone solution and found that the GTMs meet their performance requirement of 0.006 degrees RMS error (or less) for post-processed pointing angles and produced TSPI solution with error volumes on the order of one meter or less. The new GTMs will be utilized in combination with existing optical tracking mounts, which will only improve the accuracy of the resulting TSPI data product. Details regarding the approach, analysis, summary results, and conclusions are presented.

More Details

Single Photon Emitters Coupled to Photonic Wire bonds

Mounce, Andrew M.; Kaehr, Bryan J.; Titze, Michael T.; Bielejec, Edward S.; Byeon, Heejun B.

This project will test the coupling of light emitted from silicon vacancy and nitrogen vacancy defects in diamond into additively manufactured photonic wire bonds toward integration into an "on-chip quantum photonics platform". These defects offer a room-temperature solid state solution for quantum information technologies but suffer from issues such as low activation rate and variable local environments. Photonic wire bonding will allow entanglement of pre-selected solid-state defects alleviating some of these issues and enable simplified integration with other photonic devices. These developments could prove to be key technologies to realize quantum secured networks for national security applications.

More Details

2020 Energy Storage Pricing Survey

Baxter, Richard

The annual Energy Storage Pricing Survey (ESPS) series is designed to provide a standardized reference system price for various energy storage technologies across a range of different power and energy ratings. This is an essential first step in comparing systems of the different technologies’ usage costs and total cost of ownership. The final system prices are developed based on data from an extensive set of interviews with representatives across the manufacturing and project development value chain, plus available published data. This information is incorporated into a consistent methodology structure that will allow pricing information to be incorporated at whatever level it was obtained, ranging from component to fully installed system. The ESPS system pricing methodology breaks down the cost of an energy storage system into the following component categories: the storage module; the balance of system; the power conversion system; the energy management system; and the engineering, procurement, and construction costs. By evaluating each of the different component costs separately, a more accurate system cost can be developed that provides internal pricing consistency between different project sizes using the same technology, as well as between different technologies that utilize similar components.

More Details

Comparative Analysis of Change-Point Techniques for Nonlinear Photovoltaic Performance Degradation Rate Estimations

IEEE Journal of Photovoltaics

Theristis, Marios; Livera, Andreas; Micheli, Leonardo; Ascencio-Vasquez, Julian; Makrides, George; Georghiou, George E.; Stein, Joshua S.

A linear performance drop is generally assumed during the photovoltaic (PV) lifetime. However, operational data demonstrate that the PV module degradation rate (Rd) is often nonlinear, which, if neglected, may increase the financial uncertainty. Although nonlinear behavior has been the subject of numerous publications, it was only recently that statistical models able to detect change-points and extract multiple Rd values from PV performance time-series were introduced. A comparative analysis of six open-source libraries, which can detect change-points and calculate nonlinear Rd, is presented in this article. Since the real Rd and change-point locations are unknown in field data, 960 synthetic datasets from six locations and two PV module technologies have been generated using different aggregation and normalization decisions and nonlinear degradation rate patterns. The results demonstrated that coarser temporal aggregation (i.e., monthly vs. weekly), temperature correction, and both PV module technologies and climates with lower seasonality can benefit the change-point detection and Rd extraction. This also raises a concern that statistical models typically deployed for Rd analysis may be highly climatic-and technology-dependent. The comparative analysis of the six approaches demonstrated median mean absolute errors (MAE) ranging from 0.06 to 0.26%/year, given a maximum absolute Rd of 2.9%/year. The median MAE in change-point position detection varied from 3.5 months to 6 years.

More Details
Results 7801–7900 of 96,771
Results 7801–7900 of 96,771