Publications

15 Results

Search results

Jump to search filters

No tImplementing transition--edge sensors in a tabletop edge sensors in a tabletop xx--ray CT system for imaging applicationsray CT system for imaging applicationsitle

Alpert, Bradley; Becker, Daniel; Bennett, Douglas; Doriese, W.; Durkin, Malcolm; Fowler, Joseph; Gard, Johnathon; Imrek, Jozsef; Levine, Zachary; Mates, John; Miaja-Avila, Luis; Morgan, Kelsey; Nakamura, Nathan; O'Neil, Galen; Ortiz, Nathan; Reintsema, Carl; Schmidt, Daniel; Swetz, Daniel; Szypryt, Paul; Ullom, Joel; Vale, Leila; Weber, Joel; Wessels, Abigail; Dagel, Amber L.; Dalton, Gabriella D.; Laros, James H.; Jimenez, Edward S.; McArthur, Daniel M.; Thompson, Kyle R.; Walker, Christopher W.; Wheeler, Jason W.; Ablerto, Julien; Griveau, Damien; Silvent, Jeremie

Abstract not provided.

Design and fabrication of multi-metal patterned target anodes for improved quality of hyperspectral X-ray radiography and computed tomography imaging systems

Proceedings of SPIE - The International Society for Optical Engineering

Laros, James H.; Laros, James H.; Dalton, Gabriella D.; Wheeling, Rebecca W.; Laros, James H.; Thompson, Kyle R.; Laros, James H.; Jimenez, Edward S.

Applications such as counterfeit identification, quality control, and non-destructive material identification benefit from improved spatial and compositional analysis. X-ray Computed Tomography is used in these applications but is limited by the X-ray focal spot size and the lack of energy-resolved data. Recently developed hyperspectral X-ray detectors estimate photon energy, which enables composition analysis but lacks spatial resolution. Moving beyond bulk homogeneous transmission anodes toward multi-metal patterned anodes enables improvements in spatial resolution and signal-to-noise ratios in these hyperspectral X-ray imaging systems. We aim to design and fabricate transmission anodes that facilitate confirmation of previous simulation results. These anodes are fabricated on diamond substrates with conventional photolithography and metal deposition processes. The final transmission anode design consists of a cluster of three disjoint metal bumps selected from molybdenum, silver, samarium, tungsten, and gold. These metals are chosen for their k-lines, which are positioned within distinct energy intervals of interest and are readily available in standard clean rooms. The diamond substrate is chosen for its high thermal conductivity and high transmittance of X-rays. The feature size of the metal bumps is chosen such that the cluster is smaller than the 100 m diameter of the impinging electron beam in the X-ray tube. This effectively shrinks the X-ray focal spot in the selected energy bands. Once fabricated, our transmission anode is packaged in a stainless-steel holder that can be retrofitted into our existing X-ray tube. Innovations in anode design enable an inexpensive and simple method to improve existing X-ray imaging systems.

More Details

Monte-Carlo modeling and design of a high-resolution hyperspectral computed tomography system with a multi-material patterned anodes for material identification applications

Proceedings of SPIE - The International Society for Optical Engineering

Dalton, Gabriella D.; Laros, James H.; Clifford, Joshua M.; Kemp, Emily K.; Limpanukorn, Ben L.; Jimenez, Edward S.

Industrial and security communities leverage x-ray computed tomography for several applications in non-destructive evaluation such as material detection and metrology. Many of these applications ultimately reach a limit as most x-ray systems have a nonlinear mathematical operator due to the Bremsstrahlung radiation emitted from the x-ray source. This work proposes a design of a multi-metal pattered anode coupled with a hyperspectral X-ray detector to improve spatial resolution, absorption signal, and overall data quality for various quantitative. The union of a multi-metal pattered anode x-ray source with an energy-resolved photon counting detector permits the generation and detection of a preferential set of X-ray energy peaks. When photons about the peaks are detected, while rejecting photons outside this neighborhood, the overall quality of the image is improved by linearizing the operator that defines the image formation. Additionally, the effective X-ray focal spot size allows for further improvement of the image quality by increasing resolution. Previous works use machine learning techniques to analyze the hyperspectral computed tomography signal and reliably identify and discriminate a wide range of materials based on a material's composition, improving data quality through a multi-material pattern anode will further enhance these identification and classification methods. This work presents initial investigations of a multi-metal patterned anode along with a hyperspectral detector using a general-purpose Monte Carlo particle transport code known as PHITS version 3.24. If successful, these results will have tremendous impact on several nondestructive evaluation applications in industry, security, and medicine.

More Details

Monte-Carlo modeling and design of a high-resolution hyperspectral computed tomography system with a multi-material patterned anodes for material identification applications

Proceedings of SPIE - The International Society for Optical Engineering

Dalton, Gabriella D.; Laros, James H.; Clifford, Joshua M.; Kemp, Emily K.; Limpanukorn, Ben L.; Jimenez, Edward S.

Industrial and security communities leverage x-ray computed tomography for several applications in non-destructive evaluation such as material detection and metrology. Many of these applications ultimately reach a limit as most x-ray systems have a nonlinear mathematical operator due to the Bremsstrahlung radiation emitted from the x-ray source. This work proposes a design of a multi-metal pattered anode coupled with a hyperspectral X-ray detector to improve spatial resolution, absorption signal, and overall data quality for various quantitative. The union of a multi-metal pattered anode x-ray source with an energy-resolved photon counting detector permits the generation and detection of a preferential set of X-ray energy peaks. When photons about the peaks are detected, while rejecting photons outside this neighborhood, the overall quality of the image is improved by linearizing the operator that defines the image formation. Additionally, the effective X-ray focal spot size allows for further improvement of the image quality by increasing resolution. Previous works use machine learning techniques to analyze the hyperspectral computed tomography signal and reliably identify and discriminate a wide range of materials based on a material's composition, improving data quality through a multi-material pattern anode will further enhance these identification and classification methods. This work presents initial investigations of a multi-metal patterned anode along with a hyperspectral detector using a general-purpose Monte Carlo particle transport code known as PHITS version 3.24. If successful, these results will have tremendous impact on several nondestructive evaluation applications in industry, security, and medicine.

More Details

High-fidelity calibration and characterization of a spectral computed tomography system

Proceedings of SPIE - The International Society for Optical Engineering

Gallegos, Isabel G.; Dalton, Gabriella D.; Stohn, Adriana M.; Koundinyan, Srivathsan P.; Thompson, Kyle R.; Jimenez, Edward S.

Sandia National Laboratories has developed a model characterizing the nonlinear encoding operator of the world's first hyperspectral x-ray computed tomography (H-CT) system as a sequence of discrete-to-discrete, linear image system matrices across unique and narrow energy windows. In fields such as national security, industry, and medicine, H-CT has various applications in the non-destructive analysis of objects such as material identification, anomaly detection, and quality assurance. However, many approaches to computed tomography (CT) make gross assumptions about the image formation process to apply post-processing and reconstruction techniques that lead to inferior data, resulting in faulty measurements, assessments, and quantifications. To abate this challenge, Sandia National Laboratories has modeled the H-CT system through a set of point response functions, which can be used for calibration and anaylsis of the real-world system. This work presents the numerical method used to produce the model through the collection of data needed to describe the system; the parameterization used to compress the model; and the decompression of the model for computation. By using this linear model, large amounts of accurate synthetic H-CT data can be efficiently produced, greatly reducing the costs associated with physical H-CT scans. Furthermore, successfully approximating the encoding operator for the H-CT system enables quick assessment of H-CT behavior for various applications in high-performance reconstruction, sensitivity analysis, and machine learning.

More Details

High-fidelity calibration and characterization of a spectral computed tomography system

Proceedings of SPIE - The International Society for Optical Engineering

Gallegos, Isabel G.; Dalton, Gabriella D.; Stohn, Adriana M.; Koundinyan, Srivathsan P.; Thompson, Kyle R.; Jimenez, Edward S.

Sandia National Laboratories has developed a model characterizing the nonlinear encoding operator of the world's first hyperspectral x-ray computed tomography (H-CT) system as a sequence of discrete-to-discrete, linear image system matrices across unique and narrow energy windows. In fields such as national security, industry, and medicine, H-CT has various applications in the non-destructive analysis of objects such as material identification, anomaly detection, and quality assurance. However, many approaches to computed tomography (CT) make gross assumptions about the image formation process to apply post-processing and reconstruction techniques that lead to inferior data, resulting in faulty measurements, assessments, and quantifications. To abate this challenge, Sandia National Laboratories has modeled the H-CT system through a set of point response functions, which can be used for calibration and anaylsis of the real-world system. This work presents the numerical method used to produce the model through the collection of data needed to describe the system; the parameterization used to compress the model; and the decompression of the model for computation. By using this linear model, large amounts of accurate synthetic H-CT data can be efficiently produced, greatly reducing the costs associated with physical H-CT scans. Furthermore, successfully approximating the encoding operator for the H-CT system enables quick assessment of H-CT behavior for various applications in high-performance reconstruction, sensitivity analysis, and machine learning.

More Details
15 Results
15 Results