The island of Lanai is currently one of the highest penetration PV micro grids in the world, with the 1.2 MWAC La Ola Solar Farm operating on a grid with a peak net load of 4.7 MW. This facility interconnects to one of Lanai's three 12.47 kV distribution circuits. An initial interconnection requirements study (IRS) determined that several control and performance features are necessary to ensure safe and reliable operation of the island grid. These include power curtailment, power factor control, over/under voltage and frequency ride through, and power ramp rate limiting. While deemed necessary for stable grid operation, many of these features contradict the current IEEE 1547 interconnection requirements governing distributed generators. These controls have been successfully implemented, tested, and operated since January 2009. Currently, the system is producing power in a curtailed mode according to the requirements of a power purchase agreement (PPA).
The impact of humidity and temperature on a zinc oxide based transparent conducting oxide (TCO) was assessed under accelerated aging conditions. An in situ electroanalytical method was used to monitor the electrical properties for a conducting zinc oxide under controlled atmospheric (humidity, temperature and irradiation) conditions. A review of thin film photovoltaic (PV) literature has shown one major failure mode of cells/modules is associated with the ingress of water into modules in the field. Water contamination has been shown to degrade the performance of the TCO in addition to corroding interconnects and other conductive metals/materials associated with the module. Water ingress is particularly problematic in flexible thin film PV modules since traditional encapsulates such as poly(ethyl vinyl acetate) (EVA) have high water vapor transmission rates. The accelerated aging studies of the zinc oxide based TCOs will allow acceleration factors and kinetic parameters to be determined for reliability purposes.
The behavior of water confined in porous materials influences macroscopic phenomena such as solute and water mobility, ion exchange, and adsorption. While the properties of bulk water are generally understood, that of nanoconfined water remains an active area of research. We used molecular simulation and inelastic neutron scattering (INS) to investigate the effect of local structure on the vibrational behavior of nanoconfined water. We focus specifically on the nanosized pores found in the 2:1 phyllosilicate clay minerals palygorskite and sepiolite. These are charge neutral, Mg-rich trioctahedral clays with idealized formulas Mg{sub 5}Si{sub 8}O{sub 20} (OH){sub 2} {center_dot} 8H{sub 2}O and Mg{sub 8}Si{sub 12}O{sub 30} (OH){sub 2} {center_dot} 12H{sub 2}O for palygorskite and sepiolite, respectively. The regular pattern of inverted phyllosilicate layers results in narrow channels with effective van der Waals dimensions of 3.61 {angstrom} x 8.59 {angstrom} (palygorskite) and 4.67 {angstrom} x 12.29 {angstrom} (sepiolite). These clay minerals represent a unique opportunity to study water adsorbed at 'inner edge' sites of uncoordinated Mg{sup 2+}. INS spectra taken at 90 K reveal a large shift in the water librational edge between palygorskite (358 cm{sup -1}) and sepiolite (536 cm{sup -1}), indicating less restricted water motion in the smaller-pore palygorskite. The librational edge of the reference sample (ice I{sub h}) is similar to sepiolite, which confirms the unique water behavior in palygorskite. We used both classical molecular dynamics (CMD) simulations and more rigorous density functional theory (DFT) calculations to investigate the hydrogen bonding environment and vibrational behavior of structural water, defined as those water molecules coordinated to Mg{sup 2+} along the pore walls. These waters remain coordinated throughout the 1-ns timescale of the CMD simulations, and the resulting vibrational spectra indicate a similar shift in the water librational edges seen in the INS spectra. The DFT-optimized structures indicate differences in hydrogen bonding between palygorskite and sepiolite, which could explain the librational shift. Corner-sharing silicate tetrahedra in palygorskite are tilted with respect to the crystallographic a-axis due to the induced strain of layer inversion. As a result, only two short (1.9 {angstrom}) hydrogen bonds form between each water and the framework. In contrast, the relatively unstrained sepiolite structure, each water forms three hydrogen bonds with the framework, and at greater distances (2.0 {angstrom} - 2.5 {angstrom}).
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.
Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.
The characterization of former military munitions ranges is critical in the identification of areas likely to contain residual unexploded ordnance (UXO). Although these ranges are large, often covering tens-of-thousands of acres, the actual target areas represent only a small fraction of the sites. The challenge is that many of these sites do not have records indicating locations of former target areas. The identification of target areas is critical in the characterization and remediation of these sites. The Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) of the DoD have been developing and implementing techniques for the efficient characterization of large munitions ranges. As part of this process, high-resolution LIDAR terrain data sets have been collected over several former ranges. These data sets have been shown to contain information relating to former munitions usage at these ranges, specifically terrain cratering due to high-explosives detonations. The location and relative intensity of crater features can provide information critical in reconstructing the usage history of a range, and indicate areas most likely to contain UXO. We have developed an automated procedure using an adaptation of the Circular Hough Transform for the identification of crater features in LIDAR terrain data. The Circular Hough Transform is highly adept at finding circular features (craters) in noisy terrain data sets. This technique has the ability to find features of a specific radius providing a means of filtering features based on expected scale and providing additional spatial characterization of the identified feature. This method of automated crater identification has been applied to several former munitions ranges with positive results.
Deformation and fracture of thin films on compliant substrates are key factors constraining the performance of emerging flexible substrate devices. These systems often contain layers of thin polymer, ceramic and metallic films and stretchable interconnects where differing properties induce high normal and shear stresses. As long as the films remain bonded to the substrates, they may deform far beyond their freestanding form. Once debonded, substrate constraint disappears leading to film failure. Experimentally it is very difficult to measure properties in these systems at sub-micron and nanoscales. Theoretically it is very difficult to determine the contributions from the films, interfaces, and substrates. As a result our understanding of deformation and fracture behavior in compliant substrate systems is limited. This motivated a study of buckle driven delamination of thin hard tungsten films on pure PMMA substrates. The films were sputter deposited to thicknesses of 100 nm, 200 nm, and 400 nm with a residual compressive stress of 1.7 GPa. An aluminum oxide interlayer was added on several samples to alter interfacial composition. Buckles formed spontaneously on the PMMA substrates following film deposition. On films without the aluminum oxide interlayer, an extensive network of small telephone cord buckles formed following deposition, interspersed with regions of larger telephone cord buckles. On films with an aluminum oxide interlayer, telephone cord buckles formed creating a uniform widely spaced pattern. Through-substrate optical observations revealed matching buckle patterns along the film-substrate interface indicating that delamination occurred for large and small buckles with and without an interlayer. The coexistence of large and small buckles on the same substrate led to two distinct behaviors as shown in Figure 2 where normalized buckle heights are plotted against normalized film stress. The behaviors deviate significantly from behavior predicted by rigid elastic solutions. To address this issue we developed a finite element analysis technique that employed a cohesive zone model to simulate interfacial crack growth. Specifying the traction-separation relationship, cohesive strength, and work of separation along with film thickness, film stress, and film and substrate properties, buckle width and height were determined as a function of interfacial toughness. The simulations indicate that an analysis based on rigid substrate solutions significantly underestimate toughness for prescribed buckle widths: a result consistent with an analysis by Yu and Hutchinson that pieced together a solution based on non-linear plate theory with a solution for the linear film on substrate problem. More importantly, the results defined a lower limiting bound to seemingly disparate buckle deflection data. The variance from linear elastic behavior, especially for the small buckles, indicates more than substrate compliance is controlling behavior. Comparison of the experimental results with cohesive zone simulations suggests that the two buckle behaviors are associated with different levels of substrate yielding. In this presentation we will use the results to show how substrate compliance and deformation affect delamination and buckling of films on compliant substrates and provide a means to predict device performance.
The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.
It has been experimentally demonstrated that deuterium gas-puff implosions at >15 MA are powerful sources of fusion neutrons. Analysis of these experiments indicates that a substantial fraction of the obtained DD fusion neutron yields {approx} 3 x 10{sup 13}, about 50%, might have been of thermonuclear origin. The goal of our study is to estimate the scaling of the thermonuclear neutron yield from deuterium gas-puff implosions with higher load currents available after the refurbishment of Z, both in the short-pulse ({approx}100 ns) and in the long-pulse ({approx}300 ns) implosion regimes. We report extensive ID and 2D radiation-hydrodynamic simulations of such implosions. The mechanisms of ion heating to the fusion temperatures of 7-10 keV are essentially the same as used in structured gas-puff loads to generate high Ar K-shell yields: shock thermalization of the implosion kinetic energy and subsequent adiabatic heating of the on-axis plasma. We investigate the role of high-atomic-number gas that can be added to the outer shell to improve both energy coupling of the imploded mass to the generator and energy transfer to the inner part of the load, due to radiative losses that make the outer shell thin. We analyze the effect of imposed axial magnetic field {approx}30-100 kG, which can contribute both to stabilization of the implosion and to Joule heating of the imploded plasma. Our estimates indicate that thermonuclear DD neutron yields approaching 10 are within the reach on refurbished Z.
A 0D circuit code is introduced to study the wire array switch concept introduced in. It has been implemented and researched at Imperial College. An exploding wire array, the switch, is in parallel with the load, an imploding wire array. Most of the current flows in the exploding array until it expands and becomes highly resistive. The 0D code contains simple models of Joule energy deposition and plasma expansion for W and Al wires. The purpose of the device is to produce fast Z-pinch implosion, below 100ns on MAGPIE and the Sandia Z machine. Self and mutual inductances are taken into consideration as well as the rocket model for wire ablation. The switch characteristics of the exploding array are prescribed and tuned up to agree with MAGPIE shots. The dependence of the device on the configuration of the arrays is studied and scaling to ZR conditions is explored.
The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.
In this talk, we present a collection of domain decomposition algorithms for mixed finite element formulations of elasticity and incompressible fluids. The key component of each of these algorithms is the coarse space. Here, the coarse spaces are obtained in an algebraic manner by harmonically extending coarse boundary data. Various aspects of the coarse spaces are discussed for both continuous and discontinuous interpolation of pressure. Further, both classical overlapping Schwarz and hybrid iterative substructuring preconditioners are described. Numerical results are presented for almost incompressible elasticity and the Navier Stokes equations which demonstrate the utility of the methods for both structured and irregular mesh decompositions. We also discuss a simple residual scaling approach which often leads to significant reductions in iterations for these algorithms.
High-frequency pressure-fluctuation measurements were made in AEDC Tunnel 9 at Mach 10 and the NASA Langley 15-Inch Mach 6 and 31-Inch Mach 10 tunnels. Measurements were made on a 7{sup o}-half-angle cone model. Pitot measurements of freestream pressure fluctuations were also made in Tunnel 9 and the Langley Mach-6 tunnel. For the first time, second-mode waves were measured in all of these tunnels, using 1-MHz-response pressure sensors. In Tunnel 9, second-mode waves could be seen in power spectra computed from records as short as 80 {micro}s. The second-mode wave amplitudes were observed to saturate and then begin to decrease in the Langley tunnels, indicating wave breakdown. Breakdown was estimated to occur near N {approx} 5 in the Langley Mach-10 tunnel. The unit-Reynolds-number variations in the data from Tunnel 9 were too large to see the same processes.
Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.
As computational science applications grow more parallel with multi-core supercomputers having hundreds of thousands of computational cores, it will become increasingly difficult for solvers to scale. Our approach is to use hybrid MPI/threaded numerical algorithms to solve these systems in order to reduce the number of MPI tasks and increase the parallel efficiency of the algorithm. However, we need efficient threaded numerical kernels to run on the multi-core nodes in order to achieve good parallel efficiency. In this paper, we focus on improving the performance of a multithreaded triangular solver, an important kernel for preconditioning. We analyze three factors that affect the parallel performance of this threaded kernel and obtain good scalability on the multi-core nodes for a range of matrix sizes.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.
We demonstrate an optical gate architecture using electro-absorption modulator/photodiode pairs to perform AND and NOT functions. Optical bandwidth for both gates reach 40 GHz. Also shown are AND gate waveforms at 40 Gbps.
Throughout its history, lighting technology has made tremendous progress: the efficiency with which power is converted into usable light has increased 2.8 orders of magnitude over three centuries. This progress has, in turn, fueled large increases in the consumption of light and productivity of human society. In this talk, we review an emerging new technology, solid-state lighting: its frontier performance potential; the underlying advances in physics and materials that might enable this performance potential; the resulting energy consumption and human productivity benefits; and the impact on worldwide III-V epi manufacture.
Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.
Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.
Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining signals from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the {omega}{sup -1} dependence for fluctuations within the logarithmic region of the boundary layer, but are essentially flat at low frequency and do not exhibit the theorized {omega}{sup 2} dependence. Variations in the Reynolds number or streamwise measurement location collapse to a single curve for each Mach number when normalized by outer flow variables. Normalization by inner flow variables is successful for the {omega}{sup -1} region but less so for lower frequencies. A comparison of the pressure fluctuation intensities with fifty years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes. These trends suggest that much of the historical compressible database may be biased low, leading to the failure of several semi-empirical predictive models to accurately represent the power spectra acquired during the present experiments.
A novel multiphase shock tube to study particle dynamics in gas-solid flows has been constructed and tested. Currently, there is a gap in data for flows having particle volume fractions between the dusty and granular regimes. The primary purpose of this new facility is to fill that gap by providing high quality data of shock-particle interactions in flows having dense gas particle volume fractions. Towards this end, the facility aims to drive a shock into a spatially isotropic field, or curtain, of particles. Through bench-top experimentation, a method emerged for achieving this challenging task that involves the use of a gravity-fed contoured particle seeder. The seeding method is capable of producing fields of spatially isotropic particles having volume fractions of about 1 to 35%. The use of the seeder in combination with the shock tube allows for the testing of the impingement of a planar shock on a dense field of particles. The first experiments in the multiphase shock tube have been conducted and the facility is now operational.
In this presentation we examine the accuracy and performance of a suite of discrete-element-modeling approaches to predicting equilibrium and dynamic rheological properties of polystyrene suspensions. What distinguishes each approach presented is the methodology of handling the solvent hydrodynamics. Specifically, we compare stochastic rotation dynamics (SRD), fast lubrication dynamics (FLD) and dissipative particle dynamics (DPD). Method-to-method comparisons are made as well as comparisons with experimental data. Quantities examined are equilibrium structure properties (e.g. pair-distribution function), equilibrium dynamic properties (e.g. short- and long-time diffusivities), and dynamic response (e.g. steady shear viscosity). In all approaches we deploy the DLVO potential for colloid-colloid interactions. Comparisons are made over a range of volume fractions and salt concentrations. Our results reveal the utility of such methods for long-time diffusivity prediction can be dubious in certain ranges of volume fraction, and other discoveries regarding the best formulation to use in predicting rheological response.
A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.
The complexity of physical protection systems has increased to address modern threats to national security and emerging commercial technologies. A key element of modern physical protection systems is the data presented to the human operator used for rapid determination of the cause of an alarm, whether false (e.g., caused by an animal, debris, etc.) or real (e.g., a human adversary). Alarm assessment, the human validation of a sensor alarm, primarily relies on imaging technologies and video systems. Developing measures of effectiveness (MOE) that drive the design or evaluation of a video system or technology becomes a challenge, given the subjectivity of the application (e.g., alarm assessment). Sandia National Laboratories has conducted empirical analysis using field test data and mathematical models such as binomial distribution and Johnson target transfer functions to develop MOEs for video system technologies. Depending on the technology, the task of the security operator and the distance to the target, the Probability of Assessment (PAs) can be determined as a function of a variety of conditions or assumptions. PAs used as an MOE allows the systems engineer to conduct trade studies, make informed design decisions, or evaluate new higher-risk technologies. This paper outlines general video system design trade-offs, discusses ways video can be used to increase system performance and lists MOEs for video systems used in subjective applications such as alarm assessment.
The missions is to Provide the Highest Quality Materiel Solution to our Consequence Management DoD Responder's Requirements by Applying Rapid Acquisition. To Interface With Customers in Respect to the Assessment of Needs, to Deliver Products That Exceed Expectations, to Optimize Safety, Performance, Cost, Schedule, and Sustainability, Throughout the Life Cycle of Each COTS Item. On Order, Support Other Federal, State Agencies, and Local First Responders.
There is a long history of testing crushed salt as backfill for the Waste Isolation Pilot Plant program, but testing was typically done at 100 C or less. Future applications may involve backfilling crushed salt around heat-generating waste packages, where near-field temperatures could reach 250 C or hotter. A series of experiments were conducted to investigate the effects of hydrostatic stress on run-of-mine salt at temperatures up to 250 C and pressures to 20 MPa. The results of these tests were compared with analogous modeling results. By comparing the modeling results at elevated temperatures to the experimental results, the adequacy of the current crushed salt reconsolidation model was evaluated. The model and experimental results both show an increase in the reconsolidation rate with temperature. The current crushed salt model predicts the experimental results well at a temperature of 100 C and matches the overall trends, but over-predicts the temperature dependence of the reconsolidation. Further development of the deformation mechanism activation energies would lead to a better prediction of the temperature dependence by the crushed salt reconsolidation model.
Large diameter nested wire array z-pinches imploded on the Z-generator at Sandia National Laboratories have been used extensively to generate high intensity K-shell radiation. Large initial radii are required to obtain the high implosion velocities needed to efficiently radiate in the K-shell. This necessitates low wire numbers and large inter-wire gaps which introduce large azimuthal non-uniformities. Furthermore, the development of magneto-Rayleigh-Taylor instabilities during the implosion are known to generate large axial non-uniformity These effects motivate the complete, full circumference 3-dimensional modeling of these systems. Such high velocity implosions also generate large voltages, which increase current losses in the power feed and limit the current delivery to these loads. Accurate representation of the generator coupling is therefore required to reliably represent the energy delivered to, and the power radiated from these sources. We present 3D-resistive MHD calculations of the implosion and stagnation of a variety of large diameter stainless steel wire arrays (hv {approx} 6.7 keV), imploded on the Z-generator both before and after its refurbishment. Use of a tabulated K-shell emission model allows us to compare total and K-shell radiated powers to available experimental measurements. Further comparison to electrical voltage and current measurements allows us to accurately assess the power delivered to these loads. These data allow us to begin to constrain and validate our 3D MHD calculations, providing insight into ways in which these sources may be further optimized.
This paper presents initial designs of multiple-shell gas puff imploding loads for the refurbished Z generator. The nozzle has three independent drivers for three independent plena. The outer and middle plena may be charged to 250psia whilst the central jet can be charged to 1000psia. 8-cm and 12-cm outer diameter nozzles have been built and tested on the bench. The unique valve design provides a very fast opening, hence the amount of stray gas outside the core nozzle flow is minimized. A similar 8-cm nozzle was characterized earlier using a fiber optic interferometer, but at lower pressures and without the central jet. Those data have been scaled to the higher pressures required for refurbished Z and used to estimate performance. The use of three independent plena allows variation of the pressure (hence mass distribution) in the nozzle flow, allowing optimization of implosion stability and the on-axis mass that most contributes to K-shell emission. Varying the outer/middle mass ratios influences the implosion time and should affect the details of the assembly on axis as well as the radiation physics. Varying the central jet pressure will have a minor effect on implosion dynamics, but a strong effect on pinch conditions and radiation physics. Optimum mass distributions for planned initial Ar shots on refurbished Z are described. Additional interferometer data including the central jet and at higher pressures will also be presented.
Large diameter (50-70 mm) wire array z pinches are fielded on the refurbished Z machine to generate 1-10 keV K-shell x-ray radiation. Imploding with velocities approaching 100 cm/{micro}s, these loads create large dL/dt which generates a high voltage, stresses the convolute, and leads to current loss. High velocities are required to reach the few-keV electron temperatures required to strip moderate-atomic-number plasmas to the K shell, thus there is an inherent trade-off between achieving high velocity and stressing the pulsed power driver via the large dL/dt.Here, we present experiments in which the length of stagnated Cu and stainless steel z pinches was varied from 12-24 mm. The motivation in reducing the pinch height is to lower the final inductance and improve coupling to the generator. Shortening a Cu pinch from 20 to 12 mm by angling the anode glide plane reduced the final L and dL/dt, enhancing the feed current by 1.4 MA, nearly doubling the K-shell power per unit length, and increasing the net K-shell yield by 20%. X-ray spectroscopy is employed to assess differences in plasma conditions between the loads. Lengthening the pinch could lead to yield enhancements by increasing the mass participating in the implosion, provided the increased inductance is not overly detrimental to the current coupling. In addition to the experimental results, these scenarios are studied via thin-shell 0D and also magneto-hydrodynamic modeling with a coupled driver circuit model.
Star wire arrays with two closely located wires ('gates') on the inner cylinder of star wire arrays were studied. The gate wires were used to study plasma interpenetration and reproduce transparent and non-transparent regimes of propagation of the imploding plasma through the gates. The non-transparent mode of collision is typical for regular star wire arrays and it was also observed in Al stars with gate wires of regular length. Gated star arrays demonstrate similar x-ray yield but slightly different delay of x-ray generation compared to regular stars. Double length wires were applied as gate wires to increase their inductance and resistance and to increase transparency for the imploding plasma. The wires of the gates were made of Al or high atomic number elements, while the rest of the arrays were regular length Al wires. An intermediate semi-transparent mode of collision was observed in Al stars with long Al gate wires. Arrays with long heavy-element gate wires demonstrated transparency to plasma passing through. Shadowgraphy at the wavelength of 266 nm showed that plasma moved through the gate wires. Double implosions, generating a double-peak keV X-ray pulse, were observed in star arrays when the gates were made of high atomic number elements. A new laser diagnostic beampath for vertical probing of the Z-pinch was built to test how wires could be used to redirect plasma flow. This setup was designed to test gated arrays and further configurations to create a rotating pinch. Results on plasma flow control obtained are discussed, and compared to numerical calculations.
This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.
We present a shape-first approach to finding automobiles and trucks in overhead images and include results from our analysis of an image from the Overhead Imaging Research Dataset [1]. For the OIRDS, our shape-first approach traces candidate vehicle outlines by exploiting knowledge about an overhead image of a vehicle: a vehicle's outline fits into a rectangle, this rectangle is sized to allow vehicles to use local roads, and rectangles from two different vehicles are disjoint. Our shape-first approach can efficiently process high-resolution overhead imaging over wide areas to provide tips and cues for human analysts, or for subsequent automatic processing using machine learning or other analysis based on color, tone, pattern, texture, size, and/or location (shape first). In fact, computationally-intensive complex structural, syntactic, and statistical analysis may be possible when a shape-first work flow sends a list of specific tips and cues down a processing pipeline rather than sending the whole of wide area imaging information. This data flow may fit well when bandwidth is limited between computers delivering ad hoc image exploitation and an imaging sensor. As expected, our early computational experiments find that the shape-first processing stage appears to reliably detect rectangular shapes from vehicles. More intriguing is that our computational experiments with six-inch GSD OIRDS benchmark images show that the shape-first stage can be efficient, and that candidate vehicle locations corresponding to features that do not include vehicles are unlikely to trigger tips and cues. We found that stopping with just the shape-first list of candidate vehicle locations, and then solving a weighted, maximal independent vertex set problem to resolve conflicts among candidate vehicle locations, often correctly traces the vehicles in an OIRDS scene.
Chalcogenide compounds based on the rocksalt and tetradymite structures possess good thermoelectric properties and are widely used in a variety of thermoelectric devices. Examples include PbTe and AgSbTe2, which have the rocksalt structure, and Bi2Te3, Bi2Se3, and Sb2Te3, which fall within the broad tetradymite-class of structures. These materials are also of interest for thermoelectric nanocomposites, where the aim is to improve thermoelectric energy conversion efficiency by harnessing interfacial scattering processes (e.g., reducing the thermal conductivity by phonon scattering or enhancing the Seebeck coefficient by energy filtering). Understanding the phase stability and microstructural evolution within such materials is key to designing processing approaches for optimal thermoelectric performance and to predicting the long-term nanostructural stability of the materials. In this presentation, we discuss our work investigating relationships between interfacial structure and formation mechanisms in several telluride-based thermoelectric materials. We begin with a discussion of interfacial coherency and its special aspects at interfaces in telluride compounds based on the rocksalt and tetradymite structures. We compare perfectly coherent interfaces, such as the Bi2Te3 (0001) twin, with semi-coherent, misfitting interfaces. We next discuss the formal crystallographic analysis of interfacial defects in these systems and then apply this methodology to high resolution transmission electron microscopy (HRTEM) observations of interfaces in the AgSbTe2/Sb2Te3 and PbTe/Sb2Te3 systems, focusing on interfaces vicinal to {l_brace}111{r_brace}/{l_brace}0001{r_brace}. Through this analysis, we identify a defect that can accomplish the rocksalt-to-tetradymite phase transformation through diffusive-glide motion along the interface.
Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.
A deuterium gas puff z-pinch has been shown to be a significant source of neutrons with yield scaling with current as Y{sub n} {approx} I{sup 3.5}. Recent implicit, electromagnetic and kinetic particle-in-cell simulations with the LSP code have shown that the yield has significant thermonuclear and beam-target components. Beam-target neutron yield is produced from deuterium ion high-energy tails driven by the Rayleigh Taylor instability. In this paper, we present further results from 1-3D simulations of deuterium z-pinches over a wider current range 1.4-20 MA. Preliminary results show that unlike the high current regime above 7 MA, the yield at lower currents is dominated by beam-target fusion reactions from high energy ions consistent with experiment. We will also examine in 3D the impact of the Rayleigh Taylor instability on the ion energy distribution. We discuss the implications of these simulations for neutron yield at still higher currents.
Statistical analysis is typically used to reduce the dimensionality of and infer meaning from data. A key challenge of any statistical analysis package aimed at large-scale, distributed data is to address the orthogonal issues of parallel scalability and numerical stability. Many statistical techniques, e.g., descriptive statistics or principal component analysis, are based on moments and co-moments and, using robust online update formulas, can be computed in an embarrassingly parallel manner, amenable to a map-reduce style implementation. In this paper we focus on contingency tables, through which numerous derived statistics such as joint and marginal probability, point-wise mutual information, information entropy, and {chi}{sup 2} independence statistics can be directly obtained. However, contingency tables can become large as data size increases, requiring a correspondingly large amount of communication between processors. This potential increase in communication prevents optimal parallel speedup and is the main difference with moment-based statistics (which we discussed in [1]) where the amount of inter-processor communication is independent of data size. Here we present the design trade-offs which we made to implement the computation of contingency tables in parallel. We also study the parallel speedup and scalability properties of our open source implementation. In particular, we observe optimal speed-up and scalability when the contingency statistics are used in their appropriate context, namely, when the data input is not quasi-diffuse.
The objectives of this project are to: (1) move scientific programmers to higher-level, platform-agnostic yet scalable abstractions; (2) to demonstrate general OOD patterns and distill new domain-specific patterns from multiphysics applications in Fortran; and (3) to construct an open-source framework that encourages the use of the demonstrated patterns. Some conclusions are: (1) Calculus illuminates a path toward highly asynchronous computing that blurs the task/data parallel distinction; (2) Fortran 2003 appears to have the expressiveness to support the general GoF design patterns in multiphysics applications; and (3) several domain-specific and language-specific patterns emerge along the way.
Large, complex networks are ubiquitous in nature and society, and there is great interest in developing rigorous, scalable methods for identifying and characterizing their vulnerabilities. This paper presents an approach for analyzing the dynamics of complex networks in which the network of interest is first abstracted to a much simpler, but mathematically equivalent, representation, the required analysis is performed on the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit vulnerability-preserving, finite state abstractions, and develop efficient algorithms for computing these abstractions. We then propose a vulnerability analysis methodology which combines these finite state abstractions with formal analytics from theoretical computer science to yield a comprehensive vulnerability analysis process for networks of realworld scale and complexity. The potential of the proposed approach is illustrated with a case study involving a realistic electric power grid model and also with brief discussions of biological and social network examples.
Image segmentation is one of the most important and difficult tasks in digital image processing. It represents a key stage of automated image analysis and interpretation. Segmentation algorithms for gray-scale images utilize basic properties of intensity values such as discontinuity and similarity. However, it is possible to enhance edge-detection capability by means of using spectral information provided by multispectral (MS) or hyperspectral (HS) imagery. In this paper we consider image segmentation algorithms for multispectral images with particular emphasis on detection of multi-color or multispectral edges. More specifically, we report on an algorithm for joint spatio-spectral (JSS) edge detection. By joint we mean simultaneous utilization of spatial and spectral characteristics of a given MS or HS image. The JSS-based edge-detection approach, termed Spectral Ratio Contrast (SRC) edge-detection algorithm, utilizes the novel concept of matching edge signatures. The edge signature represents a combination of spectral ratios calculated using bands that enhance the spectral contrast between the two materials. In conjunction with a spatial mask, the edge signature give rise to a multispectral operator that can be viewed as a three-dimensional extension of the mask. In the extended mask, the third (spectral) dimension of each hyper-pixel can be chosen independently. The SRC is verified using MS and HS imagery from a quantum-dot in a well infrared (IR) focal plane array, and the Airborne Hyperspectral Imager.
In ductile metals, sliding contact is often accompanied by severe plastic deformation localized to a small volume of material adjacent to the wear surface. During the initial run-in period, hardness, grain structure and crystallographic texture of the surfaces that come into sliding contact undergo significant changes, culminating in the evolution of subsurface layers with their own characteristic features. Here, a brief overview of our ongoing research on the fundamental phenomena governing the friction-induced recrystallization in single crystal metals, and how these recrystallized structures with nanometer-size grains would in turn influence metallic friction will be presented. We have employed a novel combination of experimental tools (FIB, EBSD and TEM) and an analysis of the critical resolved shear stress (RSS) on the twelve slip systems of the FCC lattice to understand the evolution of these friction-induced structures in single crystal nickel. The later part of the talk deals with the mechanisms of friction in nanocrystalline Ni films. Analyses of friction-induced subsurfaces seem to confirm that the formation of stable ultrafine nanocrystalline layers with 2-10 nm grains changes the deformation mechanism from the traditional dislocation mediated one to that is predominantly controlled by grain boundaries, resulting in significant reductions in the coefficient friction.
The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.
The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to perform turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.
A NISAC study on the economic effects of a hypothetical H1N1 pandemic was done in order to assess the differential impacts at the state and industry levels given changes in absenteeism, mortality, and consumer spending rates. Part of the analysis was to determine if there were any direct relationships between pandemic impacts and gross domestic product (GDP) losses. Multiple regression analysis was used because it shows very clearly which predictors are significant in their impact on GDP. GDP impact data taken from the REMI PI+ (Regional Economic Models, Inc., Policy Insight +) model was used to serve as the response variable. NISAC economists selected the average absenteeism rate, mortality rate, and consumer spending categories as the predictor variables. Two outliers were found in the data: Nevada and Washington, DC. The analysis was done twice, with the outliers removed for the second analysis. The second set of regressions yielded a cleaner model, but for the purposes of this study, the analysts deemed it not as useful because particular interest was placed on determining the differential impacts to states. Hospitals and accommodation were found to be the most important predictors of percentage change in GDP among the consumer spending variables.
Nanowires based on the III nitride materials system have attracted attention as potential nanoscale building blocks in optoelectronics, sensing, and electronics. However, before such applications can be realized, several challenges exist in the areas of controlled and ordered nanowire synthesis, fabrication of advanced nanowire heterostructures, and understanding and controlling the nanowire electrical and optical properties. Here, recent work is presented involving the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using advanced electrical, optical and structural characterization techniques.
The Fiber Optic Intrusion Detection System (FOIDS)1 is a physical security sensor deployed on fence lines to detect climb or cut intrusions by adversaries. Calibration of detection sensitivity can be time consuming because, for example, the FiberSenSys FD-332 has 32 settings that can be adjusted independently to provide a balance between a high probability of detection and a low nuisance alarm rate. Therefore, an efficient method of calibrating the FOIDS in the field, other than by trial and error, was needed. This study was conducted to: x Identify the most significant settings for controlling detection x Develop a way of predicting detection sensitivity for given settings x Develop a set of optimal settings for validation The Design of Experiments (DoE) 2-4 methodology was used to generate small, planned test matrixes, which could be statistically analyzed to yield more information from the test data. Design of Experiments is a statistical methodology for quickly optimizing performance of systems with measurable input and output variables. DoE was used to design custom screening experiments based on 11 FOIDS settings believed to have the most affect on WKH types of fence perimeter intrusions were evaluated: simulated cut intrusions and actual climb intrusions. Two slightly different two-level randomized fractional factorial designed experiment matrixes consisting of 16 unique experiments were performed in the field for each type of intrusion. Three repetitions were conducted for every cut test; two repetitions were conducted for every climb test. Total number of cut tests analyzed was 51; the total number of climb tests was 38. This paper discusses the results and benefits of using Design of Experiments (DoE) to calibrate and optimize the settings for a FOIDS sensor
We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to the material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.
The oil of the Strategic Petroleum Reserve (SPR) represents a national response to any potential emergency or intentional restriction of crude oil supply to this country, and conforms to International Agreements to maintain such a reserve. As assurance this reserve oil will be available in a timely manner should a restriction in supply occur, the oil of the reserve must meet certain transportation criteria. The transportation criteria require that the oil does not evolve dangerous gas, either explosive or toxic, while in the process of transport to, or storage at, the destination facility. This requirement can be a challenge because the stored oil can acquire dissolved gases while in the SPR. There have been a series of reports analyzing in exceptional detail the reasons for the increases, or regains, in gas content; however, there remains some uncertainty in these explanations and an inability to predict why the regains occur. Where the regains are prohibitive and exceed the criteria, the oil must undergo degasification, where excess portions of the volatile gas are removed. There are only two known sources of gas regain, one is the salt dome formation itself which may contain gas inclusions from which gas can be released during oil processing or storage, and the second is increases of the gases release by the volatile components of the crude oil itself during storage, especially if the stored oil undergoes heating or is subject to biological generation processes. In this work, the earlier analyses are reexamined and significant alterations in conclusions are proposed. The alterations are based on how the fluid exchanges of brine and oil uptake gas released from domal salt during solutioning, and thereafter, during further exchanges of fluids. Transparency of the brine/oil interface and the transfer of gas across this interface remains an important unanswered question. The contribution from creep induced damage releasing gas from the salt surrounding the cavern is considered through computations using the Multimechanism Deformation Coupled Fracture (MDCF) model, suggesting a relative minor, but potentially significant, contribution to the regain process. Apparently, gains in gas content can be generated from the oil itself during storage because the salt dome has been heated by the geothermal gradient of the earth. The heated domal salt transfers heat to the oil stored in the caverns and thereby increases the gas released by the volatile components and raises the boiling point pressure of the oil. The process is essentially a variation on the fractionation of oil, where each of the discrete components of the oil have a discrete temperature range over which that component can be volatized and removed from the remaining components. The most volatile components are methane and ethane, the shortest chain hydrocarbons. Since this fractionation is a fundamental aspect of oil behavior, the volatile component can be removed by degassing, potentially prohibiting the evolution of gas at or below the temperature of the degas process. While this process is well understood, the ability to describe the results of degassing and subsequent regain is not. Trends are not well defined for original gas content, regain, and prescribed effects of degassing. As a result, prediction of cavern response is difficult. As a consequence of this current analysis, it is suggested that solutioning brine of the final fluid exchange of a just completed cavern, immediately prior to the first oil filling, should be analyzed for gas content using existing analysis techniques. This would add important information and clarification to the regain process. It is also proposed that the quantity of volatile components, such as methane, be determined before and after any degasification operation.