Publications

Results 6401–6500 of 96,771

Search results

Jump to search filters

Parameter estimation from spontaneous imbibition into volcanic tuff

Vadose Zone Journal

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.

More Details

MELCOR Accident Progression and Source Term Demonstration Calculations for a Heat Pipe Reactor

Wagner, Kenneth C.

MELCOR is an integrated thermal hydraulics, accident progression, and source term code for reactor safety analysis that has been developed at Sandia National Laboratories for the United States Nuclear Regulatory Commission (NRC) since the early 1980s. Though MELCOR originated as a light water reactor (LWR) code, development and modernization efforts have expanded its application scope to includ e non-LWR reactor concepts. Current MELCOR development efforts include providing the NRC with the analytical capabilities to support regulatory readiness for licensing non-LWR techno logies under Strategy 2 of the NRC?s near- term Implementation Action Plans. Beginning with the Next Generation Nuclear Project (NGNP), MELCOR has undergone a range of enha ncements to provide analytical capabilities for modeling the spectrum of advanced non-LWR concepts. This report describes the generic plant model developed to demonstrate MELCOR capabilities to perform heat pipe reactor (HPR) safety evaluations. The generic plant mode l is based on a publicly-available Los Alamos National Laboratory (LANL) Megapower design as modified in the Idaho National Laboratory (INL) Design A description. For plant aspects (e.g., reactor building size and leak rate) that are not described in the LANL and INL references , the analysts made assumptions needed to construct a MELCOR full-plant model. The HP R uses high assay, low-enrichment uranium (HALEU) fuel with steel cladding that uses heat pipes to transfer heat to a secondary Brayton air cycle. The core region is surrounded by a stainless-steel shroud, alumina reflector, core barrel and boron carbide neutron shield. The reactor is secured inside a below-grade cavity, with the operating floor located above the cavity. Example calculations are performed to show the plant response and MELCOR capabilities to characterize a range of accident conditions. The accidents selected for evaluation consider a range of degraded and failed modes of operation for key safety functions providing re activity control, the primary and secondary system heat removal, and the effectiveness of th e confinement natural circulation flow into the reactor cavity (i.e., a flow blockage).

More Details

MELCOR Accident Progression and Source Term Demonstration Calculations for a FHR

Wagner, Kenneth C.

MELCOR is an integrated thermal hydraulics, accident progression, and source term code for reactor safety analysis that has been developed at Sandia National Laboratories for the United States Nuclear Regulatory Commission (NRC) since the early 1980s. Though MELCOR originated as a light water reactor (LWR) code, development and modernization efforts have expanded its application scope to include non-LWR reactor concepts. Current MELCOR development efforts include providing the NRC with the analytical capabilities to support regulatory readiness for licensing non-LWR technologies under Strategy 2 of the NRC's near- term Implementation Action Plans. Beginning with the Next Generation Nuclear Project (NGNP), MELCOR has undergone a range of enhancements to provide analytical capabilities for modeling the spectrum of advanced non-LWR concepts. This report describes the generic plant model developed to demonstrate MELCOR capabilities to perform fluoride-salt-cooled high-temperature reactor (FHR) safety evaluations. The generic plant model is based on publicly-available FHR design information. For plant aspects (e.g., reactor building leak rate and details of the cover-gas system) that are not described in the FHR references, the analysts made assumptions needed to construct a MELCOR full-plant model. The FHR model uses a TRi-structural ISOtropic (TRISO)-particle fuel pebble-bed reactor with a primary system rejecting heat to two coiled tube air heat ex changers. Three passive direct reactor auxiliary cooling systems provide heat removal to supplement or replace the emergency secondary system heat removal during accident conditions. Surrounding the reactor vessel is a low volume reactor cavity that insulates the reactor with fire bricks and thick concrete walls. A refractory reactor liner system provides water cooling to reduce the concrete wall temperatures. Example calculations are performed to show the plant response and MELCOR capabilities to characterize a range of accident conditions. The accidents selected for evaluation consider a range of degraded and failed modes of operation for key safety functions providing reactivity control, the primary system decay heat removal and also a piping leak of the line to the coolant drain tank.

More Details

MELCOR Accident Progression and Source Term Demonstration Calculations for a HTGR

Wagner, Kenneth C.

MELCOR is an integrated thermal hydraulics, accident progression, and source term code for reactor safety analysis that has been developed at Sandia National Laboratories for the United States Nuclear Regulatory Commission (NRC) since the early 1980s. Though MELCOR originated as a light water reactor (LWR) code, development and modernization efforts over the past decades have expanded its application scope to include non-LWR reactor concepts. Current MELCOR development efforts include providing the NRC with the analytical capabilities to support regulatory readiness for licensing non-LWR technologies under Strategy 2 of the NRC's near-term Implementation Action Plans. Beginning with the Next Generation Nuclear Project (NGNP), MELCOR ha s undergone a range of enhancements to provide analytical capabilities for modeling the spectrum of advanced non-LWR concepts. This report describes the generic plant model developed to demonstrate MELCOR capabilities to perform high-temperature gas reactor (HTGR) safety evaluations. The generic plant model is based on publicly available PMBR-400 design information. For plant aspects (e.g., reactor building size and leak rate) that are not described in the PBMR-400 references, the analysts made assumptions needed to construct a MELCOR full-plant model. The HTGR model uses a TRi-structural ISOtropic (TRISO)-particle fuel pebble-bed reactor with a primary system rejecting heat to a recuperative heat exchange r. Surrounding the reactor vessel is a reactor cavity contained within a confinement room cooled by the Reactor Cavity Cooling System (RCCS). Example calculations are performed to show the plant response and MELCOR capabilities to characterize a range of accident conditions. The accidents selected for evaluation consider a range of degraded and failed modes of operation for key safety functions providing reactivity control, primary system heat removal and reactor vessel decay heat removal, and confinement cooling.

More Details

Evaluation of Applied Stress on Atmospheric Corrosion and Pitting Characteristics in 304L Stainless Steel

Corrosion

Plumley, John B.; Alexander, Christopher L.; Wu, Xin; Gordon, Scott; Yu, Zhenzhen; Kemp, Nicholas A.; Garzon, Fernando; Schindelholz, Eric J.; Schaller, Rebecca S.

The effects of applied stress, ranging from tensile to compressive, on the atmospheric pitting corrosion behavior of 304L stainless steel (SS304L) were analyzed through accelerated atmospheric laboratory exposures and microelectrochemical cell analysis. After exposing the lateral surface of a SS304L four-point bend specimen to artificial seawater at 50°C and 35% relative humidity for 50 d, pitting characteristics were determined using optical profilometry and scanning electron microscopy. The SS304L microstructure was analyzed using electron backscatter diffraction. Additionally, localized electrochemical measurements were performed on a similar, unexposed, SS304L four-point bend bar to determine the effects of applied stress on corrosion susceptibility. Under the applied loads and the environment tested, the observed pitting characteristics showed no correlation with the applied stress (from 250 MPa to -250 MPa). Pitting depth, surface area, roundness, and distribution were found to be independent of location on the sample or applied stress. The lack of correlation between pitting statistics and applied stress was more likely due to the aggressive exposure environment, with a sea salt loading of 4 g/m2 chloride. The pitting characteristics observed were instead governed by the available cathode current and salt distribution, which are a function of sea salt loading, as well as pre-existing underlying microstructure. In microelectrochemical cell experiments performed in Cl- environments comparable to the atmospheric exposure and in environments containing orders of magnitude lower Cl- concentrations, effects of the applied stress on corrosion susceptibility were only apparent in open-circuit potential in low Cl- concentration solutions. Cl- concentration governed the current density and transpassive dissolution potential.

More Details

A discussion on various experimental methods of impact ionization coefficient measurement in GaN

AIP Advances

Ji, Dong; Zeng, Ke; Bian, Zhengliang; Shankar, Bhawani; Gunning, Brendan P.; Binder, Andrew B.; Dickerson, Jeramy R.; Aktas, Ozgur; Anderson, Travis J.; Kaplar, Robert K.; Chowdhury, Srabanti

Impact ionization coefficients play a critical role in semiconductors. In addition to silicon, silicon carbide and gallium nitride are important semiconductors that are being seen more as mainstream semiconductor technologies. As a reflection of the maturity of these semiconductors, predictive modeling has become essential to device and circuit designers, and impact ionization coefficients play a key role here. Recently, several studies have measured impact ionization coefficients. We dedicated the first part of our study to comparing three experimental methods to estimate impact ionization coefficients in GaN, which are all based on photomultiplication but feature characteristic differences. The first method inserts an InGaN hole-injection layer, the accuracy of which is challenged by the dominance of ionization in InGaN, leading to possible overestimation of the coefficients. The second method utilizes the Franz-Keldysh effect for hole injection but not for electrons, where the mixed injection of induced carriers would require a margin of error. The third method uses complementary p-n and n-p structures that have been at the basis of this estimation in Si and SiC and leans on the assumption of a constant electric field, and any deviation would require a margin of error. In the second part of our study, we evaluated the models using recent experimental data from diodes demonstrating avalanche breakdown.

More Details

Seismic strain energy partitioning: estimating the strain energy of seismic body waves

Poppeliers, Christian P.; Young, Brian A.

This report details a method to estimate the energy content of various types of seismic body waves. The method is based on the strain energy of an elastic wavefield and Hooke’s Law. We present a detailed derivation of a set of equations that explicitly partition the seismic strain energy into two parts: one for compressional (P) waves and one for shear (S) waves. We posit that the ratio of these two quantities can be used to determine the relative contribution of seismic P and S waves, possibly as a method to discriminate between earthquakes and buried explosions. We demonstrate the efficacy of our method by using it to compute the strain energy of synthetic seismograms with differing source characteristics. Specifically, we find that explosion-generated seismograms contain a preponderance of P wave strain energy when compared to earthquake-generated synthetic seismograms. Conversely, earthquake-generated synthetic seismograms contain a much greater degree of S wave strain energy when compared to explosion-generated seismograms.

More Details

Ellipsoidal Fitting Methodology for Defect Clusters in Gallium Arsenide

Hehr, Brian D.

In assessing the initial spatial distribution of defects from neutron or heavy ion irradiation, it is useful to have a reliable, automated, and fast-running tool to evaluate characteristic metrics such as the number of sub-clusters or the overall cluster volume. The latter metric, for instance, can be utilized to estimate a reference neutron fluence level at which inter-cluster interaction effects begin to become significant. This paper details a methodology to fit an arbitrarily complex defect map with a set of ellipsoids (one per identified sub-cluster) in which the constituent defects of a sub-cluster are determined using fuzzy degree-of-membership analysis. Specifically, a parameterized model is developed for point defects in gallium arsenide. Cluster volume calculations based on the model are compared against convex hull and single- ellipsoid representations. Results show that the parameterized sub-cluster model begins to deviate from the two reference models at a recoil energy of about 100 keV in GaAs, with the convex hull and single-ellipsoid representations increasingly overestimating the volume thereafter.

More Details

Total Ionizing Dose Effects on Long-Term Data Retention Characteristics of Commercial 3-D NAND Memories

IEEE Transactions on Nuclear Science

Buddhanoy, Matchima; Kumari, Preeti; Surendranathan, Umeshwarnath; Olszewska-Wasiolek, Maryla A.; Hattar, Khalid M.; Ray, Biswajit

This article evaluates the data retention characteristics of irradiated multilevel-cell (MLC) 3-D NAND flash memories. We irradiated the memory chips by a Co-60 gamma-ray source for up to 50 krad(Si) and then wrote a random data pattern on the irradiated chips to find their retention characteristics. The experimental results show that the data retention property of the irradiated chips is significantly degraded when compared to the un-irradiated ones. We evaluated two independent strategies to improve the data retention characteristics of the irradiated chips. The first method involves high-temperature annealing of the irradiated chips, while the second method suggests preprogramming the memory modules before deploying them into radiation-prone environments.

More Details

Sandia Wind Energy Program: FY21 Accomplishments

Klise, Geoffrey T.

This report summarizes Fiscal Year 2021 accomplishments from Sandia National Laboratories Wind Energy Program. The portfolio consists of funding provided by the DOE EERE Wind Energy Technologies Office (WETO), Advanced Research Projects Agency-Energy (ARPA-E), DOE Small Business Innovation Research (SBIR), and the Sandia Laboratory Directed Research and Development (LDRD) program. These accomplishments were made possible through capabilities investments by WETO, internal Sandia investment, and partnerships between Sandia and other national laboratories, universities, and research institutions around the world.

More Details

Total Ionizing Dose Effects on Read Noise of MLC 3-D NAND Memories

IEEE Transactions on Nuclear Science

Surendranathan, Umeshwarnath; Olszewska-Wasiolek, Maryla A.; Hattar, Khalid M.; Fleetwood, Daniel M.; Ray, Biswajit

This article analyzes the total ionizing dose (TID) effects on noise characteristics of commercial multi-level-cell (MLC) 3-D NAND memory technology during the read operation. The chips were exposed to a Co-60 gamma-ray source for up to 100 krad(Si) of TID. We find that the number of noisy cells in the irradiated chip increases with TID. Bit-flip noise was more dominant for cells in an erased state during irradiation compared to programmed cells.

More Details

Long-Term Stability of PVD/Sputtered Au Electrical Contacts to Thermoelectric Bi2Te2 (Re-evaluation of SAND2015-7203)

Sugar, Joshua D.; Bartelt, Norman C.; Sharma, Peter A.; Adams, David L.; Michael, Joseph R.

The fabrication of long-lived electrical contacts to thermoelectric Bi2Te3-based modules is a challenging problem due to chemical incompatibilities and rapid diffusion rates. Previously, technical guidance from SAND report 2015-7203 selected electroplated Au as the preferred method for fabrication of long-lived contacts because of concerns that the grain structure of sputtered/physical vapor deposited (PVD) Au contacts can evolve during aging. We have re-evaluated PVD Au contacts and show that they are appropriate for long-life service. We measure grain size and morphology at different aging times under accelerated temperature gradient conditions, and we show that the PVD Au contacts are stable and remain relatively unchanged. The PVD Au fabricated here is not subject to the deterioration observed in the previous report.

More Details

Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors

Fuel

Oh, Heechang; Hwang, Joonsik; Pickett, Lyle M.; Han, Donghee

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand the complex injection behavior and to develop a predictive model to be utilized in the development process. This study presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks (ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation between the detected EOI timings calculated from the modeled signal and the measurement results showed a high coefficient of determination.

More Details

The intrinsic value of bioblendstocks: Prenol as a case study

Fuel

Ramirez-Corredores, M.M.; Vega-Montoto, Lorenzo; Monroe, Eric; Davis, Ryan W.

Decarbonizing the transportation sector is likely to require both electrification and increased incorporation of biofuels and/or bioblendstocks. While the social and environmental benefits of bioblendstocks are well understood, their real value for the fuel producers has not been established. This work considers prenol as a bioblendstock case study to identify sources of intrinsic value to fuel blenders by studying the properties of binary mixtures with gasoline components. The considered refinery blendstocks were samples of full range naphthas from the distillation, fluidized catalytic cracking, isomerization, alkylation, and reforming units. Octane numbers, Reid vapor pressure, distillation curves, and sulfur content were evaluated. Our results indicate the need for adjusting the formulation of the base fuel, depending on the interplay among the properties of the bioblendstock and those of the base fuel. Prenol increased research octane number (RON) and octane sensitivity (OS) of the base fuel, by up to 25 and 10 octane numbers, respectively. Additionally, 10 vol% prenol reduced RVP up to 2.2 psi, for the more volatile blendstock. Thus, considering prenol as a low volatility, RON/OS boosting bioblendstock, the composition of the preferred base fuel was proposed as containing reduced olefins and aromatics, and increase light fractions. The potential impact of this new gasoline formulation on refining processes and products gives rise to direct sources of value to the refiners, such as exporting products to the chemicals market, increasing the value of intermediate refinery streams, decreasing operating severity of certain refinery units, and broadening of the product suite.

More Details

The Corrected Distortion model for Lagrangian spray simulation of transcritical fuel injection

International Journal of Multiphase Flow

Nguyen, Tuan M.; Dahms, Rainer N.; Pickett, Lyle M.; Tagliante-Saracino, Fabien R.

In this work, we present a detailed implementation and validation of the droplet modeling framework proposed by Dahms and Oefelein (2016) into the engine commercial CFD software CONVERGE using the User Defined Function (UDF) interface. The model accounts for the nonlinear deformation and oscillation experienced by liquid spray droplet injected into high pressure and temperature. Lagrangian spray simulations of Engine Combustion Network (ECN) Spray A are performed. Model validation against standard experimental measurements of liquid velocity, vapor mixture fraction is conducted. To perform more rigorous model validation, new experimental measurements based on Diffused Back Illumination (DBI) are introduced. The new measurements are processed for Projected Liquid Volume (PLV), which offers as close as possible one-to-one model validation for liquid penetration while offering new insights into the spray physics. Comparison with a One-D model based on adiabatic mixing theory by Siebers (1999) and Desantes et al. (2007) are also conducted. Through these model validation exercises, it is shown that the new framework improves liquid-phase penetration predictions, following a tendency for enhanced evaporation, compared to the standard approach for both Reynolds Average Navier Stokes (RANS) and Large Eddy Simulation (LES). At the liquid length, maximum mixture fraction values predicted by the new approach are in good agreement those of an adiabatic mixing model. Qualitative analysis of the spray behaviors during the early stage of the injection process reveals that the proposed framework predicts significant increase in droplet evaporation rate with lower drop drag compared to the current standard approach.

More Details

Topological homogenization of metamaterial variability

Materials Today

White, Benjamin C.; Garland, Anthony G.; Boyce, Brad B.

With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.

More Details
Results 6401–6500 of 96,771
Results 6401–6500 of 96,771