Publications

5 Results
Skip to search filters

Large-eddy simulation of laser-ignited direct injection gasoline spray for emission control

Energies

Tagliante-Saracino, Fabien R.; Nguyen, Tuan M.; Pickett, Lyle M.; Sim, Hyung S.

Large-Eddy Simulations (LES) of a gasoline spray, where the mixture was ignited rapidly during or after injection, were performed in comparison to a previous experimental study with quantitative flame motion and soot formation data [SAE 2020-01-0291] and an accompanying Reynolds-Averaged Navier–Stokes (RANS) simulation at the same conditions. The present study reveals major shortcomings in common RANS combustion modeling practices that are significantly improved using LES at the conditions of the study, specifically for the phenomenon of rapid ignition in the highly turbulent, stratified mixture. At different ignition timings, benchmarks for the study include spray mixing and evaporation, flame propagation after ignition, and soot formation in rich mixtures. A comparison of the simulations and the experiments showed that the LES with Dynamic Structure turbulence were able to capture correctly the liquid penetration length, and to some extent, spray collapse demonstrated in the experiments. For early and intermediate ignition timings, the LES showed excellent agreement to the measurements in terms of flame structure, extent of flame penetration, and heat-release rate. However, RANS simulations (employing the common G-equation or well-stirred reactor) showed much too rapid flame spread and heat release, with connections to the predicted turbulent kinetic energy. With confidence in the LES for predicted mixture and flame motion, the predicted soot formation/oxidation was also compared to the experiments. The soot location was well captured in the LES, but the soot mass was largely underestimated using the empirical Hiroyasu model. An analysis of the predicted fuel–air mixture was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing.

More Details

Combined Experimental/Numerical Study of the Soot Formation Process in a Gasoline Direct-Injection Spray in the Presence of Laser-Induced Plasma Ignition

SAE Technical Papers

Tagliante-Saracino, Fabien R.; Sim, Hyung S.; Pickett, Lyle M.; Nguyen, Tuan M.; Skeen, Scott

Combustion issued from an eight-hole, direct-injection spray was experimentally studied in a constant-volume pre-burn combustion vessel using simultaneous high-speed diffused back-illumination extinction imaging (DBIEI) and OH∗ chemiluminescence. DBIEI has been employed to observe the liquid-phase of the spray and to quantitatively investigate the soot formation and oxidation taking place during combustion. The fuel-air mixture was ignited with a plasma induced by a single-shot Nd:YAG laser, permitting precise control of the ignition location in space and time. OH∗ chemiluminescence was used to track the high-temperature ignition and flame. The study showed that increasing the delay between the end of injection and ignition drastically reduces soot formation without necessarily compromising combustion efficiency. For long delays between the end of injection and ignition (1.9 ms) soot formation was eliminated in the main downstream charge of the fuel spray. However, poorly atomized and large droplets formed at the end of injection (dribble) eventually do form soot near the injector even when none is formed in the main charge. The quantitative soot measurements for these spray and ignition scenarios, resolved in time and space, represents a significant new achievement. Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess spray mixing and combustion. An analysis of the predicted fuel-air mixture in key regions, defined based upon experimental observations, was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing. The mixture analysis indicates that soot production can be avoided if the flame propagates into regions where the equivalence ratio (φ) is already below 2. Reactive RANS simulations have also been performed, but with a poor match against the experiment, as the flame speed and heat-release rate are largely over estimated. This modeling weakness appears related to a very high level of turbulent viscosity predicted for the high-momentum spray in the RANS simulations, which is an important consideration for modeling ignition and flame propagation in mixtures immediately created by the spray.

More Details
5 Results
5 Results