In recent years, the Engine Combustion Network (ECN) has developed as a worldwide reference for understanding and describing engine combustion processes, successfully bringing together experimental and numerical efforts. Since experiments and numerical simulations both target the same boundary conditions, an accurate characterization of the stratified environment that is inevitably present in experimental facilities is required. The difference between the core-, and pressure-derived bulk-temperature of pre-burn combustion vessels has been addressed in various previous publications. Additionally, thermocouple measurements have provided initial data on the boundary layer close to the injector nozzle, showing a transition to reduced ambient temperatures. The conditions at the start of fuel injection influence physicochemical properties of a fuel spray, including near nozzle mixing, heat release computations, and combustion parameters. To address the temperature stratification in more detail, thermocouple measurements at larger distances from the spray axis have been conducted. Both the temperature field prior to the pre-combustion event that preconditions the high-temperature, high-pressure ambient, as well as the stratification at the moment of fuel injection were studied. To reveal the cold boundary layer near the injector with a better spatial resolution, Rayleigh scattering experiments and thermocouple measurements at various distances close to the nozzle have been carried out. The impact of the boundary layers and temperature stratification are illustrated and quantified using numerical simulations at Spray A conditions. Next to a reference simulation with a uniform temperature field, six different stratified temperature distributions have been generated. These distributions were based on the mean experimental temperature superimposed by a randomized variance, again derived from the experiments. The results showed that an asymmetric flame structure arises in the computed results when the temperature stratification input is used. In these predictions, first-stage ignition is advanced by 24μs, while second-stage ignition is delayed by 11μs. At the same time a lift-off length difference between the top and the bottom of up to 1.1 mm is observed. Furthermore, the lift-off length is less stable over time. Given the shown dependency, the temperature data is made available along with the vessel geometry data as a recommended basis for future numerical simulations.
In this work, we present a detailed implementation and validation of the droplet modeling framework proposed by Dahms and Oefelein (2016) into the engine commercial CFD software CONVERGE using the User Defined Function (UDF) interface. The model accounts for the nonlinear deformation and oscillation experienced by liquid spray droplet injected into high pressure and temperature. Lagrangian spray simulations of Engine Combustion Network (ECN) Spray A are performed. Model validation against standard experimental measurements of liquid velocity, vapor mixture fraction is conducted. To perform more rigorous model validation, new experimental measurements based on Diffused Back Illumination (DBI) are introduced. The new measurements are processed for Projected Liquid Volume (PLV), which offers as close as possible one-to-one model validation for liquid penetration while offering new insights into the spray physics. Comparison with a One-D model based on adiabatic mixing theory by Siebers (1999) and Desantes et al. (2007) are also conducted. Through these model validation exercises, it is shown that the new framework improves liquid-phase penetration predictions, following a tendency for enhanced evaporation, compared to the standard approach for both Reynolds Average Navier Stokes (RANS) and Large Eddy Simulation (LES). At the liquid length, maximum mixture fraction values predicted by the new approach are in good agreement those of an adiabatic mixing model. Qualitative analysis of the spray behaviors during the early stage of the injection process reveals that the proposed framework predicts significant increase in droplet evaporation rate with lower drop drag compared to the current standard approach.
Large-Eddy Simulations (LES) of a gasoline spray, where the mixture was ignited rapidly during or after injection, were performed in comparison to a previous experimental study with quantitative flame motion and soot formation data [SAE 2020-01-0291] and an accompanying Reynolds-Averaged Navier–Stokes (RANS) simulation at the same conditions. The present study reveals major shortcomings in common RANS combustion modeling practices that are significantly improved using LES at the conditions of the study, specifically for the phenomenon of rapid ignition in the highly turbulent, stratified mixture. At different ignition timings, benchmarks for the study include spray mixing and evaporation, flame propagation after ignition, and soot formation in rich mixtures. A comparison of the simulations and the experiments showed that the LES with Dynamic Structure turbulence were able to capture correctly the liquid penetration length, and to some extent, spray collapse demonstrated in the experiments. For early and intermediate ignition timings, the LES showed excellent agreement to the measurements in terms of flame structure, extent of flame penetration, and heat-release rate. However, RANS simulations (employing the common G-equation or well-stirred reactor) showed much too rapid flame spread and heat release, with connections to the predicted turbulent kinetic energy. With confidence in the LES for predicted mixture and flame motion, the predicted soot formation/oxidation was also compared to the experiments. The soot location was well captured in the LES, but the soot mass was largely underestimated using the empirical Hiroyasu model. An analysis of the predicted fuel–air mixture was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing.
Combustion issued from an eight-hole, direct-injection spray was experimentally studied in a constant-volume pre-burn combustion vessel using simultaneous high-speed diffused back-illumination extinction imaging (DBIEI) and OH∗ chemiluminescence. DBIEI has been employed to observe the liquid-phase of the spray and to quantitatively investigate the soot formation and oxidation taking place during combustion. The fuel-air mixture was ignited with a plasma induced by a single-shot Nd:YAG laser, permitting precise control of the ignition location in space and time. OH∗ chemiluminescence was used to track the high-temperature ignition and flame. The study showed that increasing the delay between the end of injection and ignition drastically reduces soot formation without necessarily compromising combustion efficiency. For long delays between the end of injection and ignition (1.9 ms) soot formation was eliminated in the main downstream charge of the fuel spray. However, poorly atomized and large droplets formed at the end of injection (dribble) eventually do form soot near the injector even when none is formed in the main charge. The quantitative soot measurements for these spray and ignition scenarios, resolved in time and space, represents a significant new achievement. Reynolds-averaged Navier-Stokes (RANS) simulations were performed to assess spray mixing and combustion. An analysis of the predicted fuel-air mixture in key regions, defined based upon experimental observations, was used to explain different flame propagation speeds and soot production tendencies when varying ignition timing. The mixture analysis indicates that soot production can be avoided if the flame propagates into regions where the equivalence ratio (φ) is already below 2. Reactive RANS simulations have also been performed, but with a poor match against the experiment, as the flame speed and heat-release rate are largely over estimated. This modeling weakness appears related to a very high level of turbulent viscosity predicted for the high-momentum spray in the RANS simulations, which is an important consideration for modeling ignition and flame propagation in mixtures immediately created by the spray.