Publications

Publications / Journal Article

Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors

Oh, Heechang; Hwang, Joonsik; Pickett, Lyle M.; Han, Donghee

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand the complex injection behavior and to develop a predictive model to be utilized in the development process. This study presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks (ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation between the detected EOI timings calculated from the modeled signal and the measurement results showed a high coefficient of determination.