Publications

Results 85801–86000 of 99,299

Search results

Jump to search filters

Conformal coatings : challenging environments lead to growth

Proposed for publication in the Journal of Coatings Technology.

Advances in technology have resulted in the need for electronic devices to continue functioning even when placed in harsh environments. Widespread use of cell phones, laptop computers, and other personal electronic devices, the increased number of electronic controls in home appliances, and the ever more extensive utilization of digital technology in the automotive industry have led to a growing demand for printed circuit boards (PCBs) that can perform under difficult conditions. Conformal coatings provide a protective barrier that enables the PCBs to function in these demanding environments. This growth in demand comes despite the cost and numerous difficulties associated with the application of these coatings. Many conformal coatings manufacturers are investing in the development of new technologies that minimize these difficulties. Others are involved in developing disruptive technologies that will serve as alternatives to traditional conformal coatings processes.

More Details

An Example Uncertainty and Sensitivity Analysis for Reactive Transport at the Horonobe Site for Performance Assessment Calculations

James, Scott; Cohan, Alexander

Given pre-existing Groundwater Modeling System (GMS) models of the Horonobe Underground Research Laboratory (URL) at both the regional and site scales, this work performs an example uncertainty analysis for performance assessment (PA) applications. After a general overview of uncertainty and sensitivity analysis techniques, the existing GMS site-scale model is converted to a PA model of the steady-state conditions expected after URL closure. This is done to examine the impact of uncertainty in site-specific data in conjunction with conceptual model uncertainty regarding the location of the Oomagari Fault. A heterogeneous stochastic model is developed and corresponding flow fields and particle tracks are calculated. In addition, a quantitative analysis of the ratio of dispersive to advective forces, the F-ratio, is performed for stochastic realizations of each conceptual model. Finally, a one-dimensional transport abstraction is modeled based on the particle path lengths and the materials through which each particle passes to yield breakthrough curves at the model boundary. All analyses indicate that accurate characterization of the Oomagari Fault with respect to both location and hydraulic conductivity is critical to PA calculations. This work defines and outlines typical uncertainty and sensitivity analysis procedures and demonstrates them with example PA calculations relevant to the Horonobe URL. Acknowledgement: This project was funded by Japan Nuclear Cycle Development Institute (JNC). This work was conducted jointly between Sandia National Laboratories (SNL) and JNC under a joint JNC/U.S. Department of Energy (DOE) work agreement. Performance assessment calculations were conducted and analyzed at SNL based on a preliminary model by Kashima, Quintessa, and JNC and include significant input from JNC to make sure the results are relevant for the Japanese nuclear waste program.

More Details

Additive patterning of conductors and superconductors by solution stamping nanolithography

Proposed for publication in Small.

Clem, Paul; Chang, Nolanne A.; Hsu, Julia W.; Richardson, Jacob J.; Richardson, Jacob J.

Solution stamping nanolithography (SSNL) was used to print patterns of metallic copper and high-temperature-superconducting YBa{sub 2}Cu{sub 3}O{sub 7}. SSNL combines soft lithography and chemical-solution deposition to achieve direct printing of inorganic materials. The size of the printed patterns is determined by both the stamp feature size and the wetting properties of the solution.

More Details

Group tele-immersion:enabling natural interactions between groups at distant sites

Yang, Christine L.; Stewart, Corbin J.

We present techniques and a system for synthesizing views for video teleconferencing between small groups. In place of replicating one-to-one systems for each pair of users, we create a single unified display of the remote group. Instead of performing dense 3D scene computation, we use more cameras and trade-off storage and hardware for computation. While it is expensive to directly capture a scene from all possible viewpoints, we have observed that the participants viewpoints usually remain at a constant height (eye level) during video teleconferencing. Therefore, we can restrict the possible viewpoint to be within a virtual plane without sacrificing much of the realism, and in cloning so we significantly reduce the number of required cameras. Based on this observation, we have developed a technique that uses light-field style rendering to guarantee the quality of the synthesized views, using a linear array of cameras with a life-sized, projected display. Our full-duplex prototype system between Sandia National Laboratories, California and the University of North Carolina at Chapel Hill has been able to synthesize photo-realistic views at interactive rates, and has been used to video conference during regular meetings between the sites.

More Details

Corrective measures evaluation report for Tijeras Arroyo groundwater

Collins, Sue S.

This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

More Details

Spatially resolved monitoring of aqueous CdS nanoparticle synthesis in a microreactor

2005 AIChE Spring National Meeting, Conference Proceedings

Sounart, Thomas L.; Bickel, Jessica E.; Tallant, David R.; Matzke, Carolyn M.; Voigt, James A.; Michalske, Terry A.

The synthesis of cysteine-capped CdS quantum dot nanocrystals (CdS-cys) between two interdiffusing reagent streams in a continuous flow microfluidic reactor was investigated. Spatially resolved fluorescence imaging and spectroscopy of the microreactor at various reactant concentrations and flow rates was used to study nucleation and growth of these particles. The laminar flow of the impinging streams allowed for controlled diffusional mixing of the reacting cadmium and sulfide ions at the boundary between the two solutions, while the capping agent was present in one or both of the solutions in excess. The results show that the photoluminescence of these particles grown under these microfluidic conditions differs from those grown in batch reactors.

More Details

The structure of poly(ethylene oxide) liquids: Comparison of integral equation theory with molecular dynamics simulations and neutron scattering

Polymer

Curro, John G.; Frischknecht, Amalie L.

Polymer reference interaction site model (PRISM) calculations and molecular dynamics (MD) simulations were carried out on poly(ethylene oxide) liquids using a force field of Smith, Jaffe, and Yoon. The intermolecular pair correlation functions and radius of gyration from theory were in very good agreement with MD simulations when the partial charges were turned off. When the charges were turned on, considerably more structure was seen in the intermolecular correlations obtained from MD simulation. Moreover, the radius of gyration increased by 38% due to electrostatic repulsions along the chain backbone. Because the partial charges greatly affect the structure, significant differences were seen between the PRISM calculations (without charges) and the wide angle neutron scattering measurements of Annis and coworkers for the total structure factor, and the hydrogen/hydrogen intermolecular correlation function. This is in contrast to previous PRISM calculations on poly (dimethyl siloxane). © 2005 Elsevier Ltd. All rights reserved.

More Details

Nanoliter MEMS package gas sampling to determine hermeticity

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Thornberg, Steven M.; Hochrein, James M.; Padilla, Therese A.; Abraham, Ion C.

Maintaining the integrity of the internal atmosphere of a hermetic device is essential for long-term component reliability because it is within this environment that all internal materials age. As MEMS package sizes decrease with miniaturization, characterization of the internal atmosphere becomes increasingly difficult. Typical transistor metal cans (e.g., TO-5 type) and large MEMS devices have internal volumes of tenths of a milliliter. Last year, gas-sampling methods for smaller-sized MEMS packages were developed and successfully demonstrated on volumes as low as 3 microliters (package outside dimensions: ∼1 × 2 × 5 mm). This year, we present gas sampling methods and results for a much smaller MEMS package having an internal volume of 30 nanoliters, two orders of magnitude lower than the previous small package. After entirely redesigning the previous sampling manifold, several of the 30 nanoliter MEMS were gas sampled successfully and results showed the intended internal gas atmosphere of nitrogen was sealed inside the package. The technique is a radical jump from previous methods because not only were these MEMS packages sampled, but also the gas from each package was analyzed dozens of times over the course of about 20 minutes. Additionally, alternate methods for gas analyses not using helium or fluorinert will be presented.

More Details

Temperature rise of the silicon mask-PMMA resist assembly during LIGA exposure

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Ting, Aili

Deep X-ray lithography on PMMA resist is used in the LIGA process. The resist is exposed to synchrotron X-rays through a patterned mask and then is developed in a liquid developer to make high aspect ratio microstructures. This work addresses the thermal analysis and temperature rise of the mask-resist assembly during exposure at the Advanced Light Source (ALS) synchrotron. The concern is that the thermal expansion will lower the accuracy of the lithography. We have developed a three-dimensional finite-element model of the mask and resist assembly. We employed the LIGA exposure-development software LEX-D and the commercial software ABAQUS to calculate heat transfer of the assembly during exposure. The calculations of assembly maximum temperature have been compared with temperature measurements conducted at ALS. The temperature rise in the silicon mask and the mask holder comes directly from the X-ray absorption, but forced convection of nitrogen jets carry away a significant portion of heat energy from the mask surface, while natural convection plays a negligible role. The temperature rise in PMMA resist is mainly from heat conducted from the silicon substrate backward to the resist and from the mask plate through inner cavity air forward to the resist, while the X-ray absorption is only secondary. Therefore, reduction of heat flow conducted from both substrate and cavity air to the resist is essential. An improved water-cooling block is expected to carry away most heat energy along the main heat conductive path, leaving the resist at a favorable working temperature.

More Details

Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Mcgraw, Gregory J.; Davalos, Rafael V.; Brazzle, John D.; Hachman, John T.; Hunter, Marion C.; Chames, Jeffery M.; Fiechtner, Gregory J.; Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor® 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.

More Details

Damage of MEMS thermal actuators heated by laser irradiation

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Phinney, Leslie; Rhodes, Kelly A.; Sackos, John T.; Walraven, Jeremy

Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

More Details

Fabrication and characterization of polymer microfluidic devices for BioAgent detection

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Morales, Alfredo M.; Brazzle, John D.; Crocker, Robert W.; Domeier, Linda A.; Goods, Eric B.; Hachman, John T.; Harnett, Cindy K.; Hunter, Marion C.; Mani, Seethambal; Mosier, Bruce P.; Simmons, Blake

Sandia and Lawrence Livermore National Laboratories are developing a briefcase-sized, broad-spectrum bioagent detection system. This autonomous instrument, the BioBriefcase, will monitor the environment and warn against bacterium, virus, and toxin based biological attacks. At the heart of this device, inexpensive polymer microfluidic chips will carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; and thermal chip sealing. Since the performance and reliability of microfluidic chips are very sensitive to fluidic impedance and to electromagnetic fluxes, the microchannel dimensions and shape have to be tightly controlled during chip fabrication. In this talk, we will present an overview of chip design and fabrication. Metrology data collected at different fabrication steps and the dimensional deviations of the polymer chip from the original design will be discussed.

More Details

Frequency response of piezoresistive-based MASA resonators with electrostatic vertical comb-drive actuation

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Stafford, Harold L.; Epp, David S.

We report on experimental work that characterizes the frequency response of resonators of Microfabricated Acoustic Spectrum Analyzer (MASA) devices which were fabricated using Sandia's SUMMiT™ processing technology. A 1.1 micron silicon nitride layer was used in the fabrication to isolate the sense mechanism from the actuation mechanism. The devices are actuated using electrostatic vertical comb-drive actuation in a 30-50 mTorr vacuum and the frequency response is measured using a piezo-resistive readout mechanism. Two MASA devices are tested using comb-drive ac signals (e.g., 200mV) superimposed on a dc bias (e.g., 15V). In addition, dc bias voltages placed on the comb-drive are shown to tune the resonant frequency of the resonator. The frequency response of the piezo-resistive readout mechanism is measured using a 10V dc supply voltage supplied across its Wheatstone bridge. The results show that the piezo-resistive readout mechanism can detect resonant behavior and determine resonant frequency. A laser doppler vibrometer is used as an independent means to characterize the frequency response and verify the results.

More Details

Fabrication techniques for low loss silicon nitride waveguides

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Shaw, Michael J.; Guo, Junpeng; Vawter, Gregory A.; Habermehl, Scott D.; Sullivan, Charles T.

Optical waveguide propagation loss due to sidewall roughness, material impurity and inhomogeneity has been the focus of many studies in fabricating planar lightwave circuits (PLC's)1,2,3 In this work, experiments were carried out to identify the best fabrication process for reducing propagation loss in single mode waveguides comprised of silicon nitride core and silicon dioxide cladding material. Sidewall roughness measurements were taken during the fabrication of waveguide devices for various processing conditions. Several fabrication techniques were explored to reduce the sidewall roughness and absorption in the waveguides. Improvements in waveguide quality were established by direct measurement of waveguide propagation loss. The lowest linear waveguide loss measured in these buried channel waveguides was 0.1 dB/cm at a wavelength of 1550 nm. This low propagation loss along with the large refractive index contrast between silicon nitride and silicon dioxide enables high density integration of photonic devices and small PLC's for a variety of applications in photonic sensing and communications.

More Details

High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

Proceedings of SPIE - The International Society for Optical Engineering

Armstrong, Darrell J.; Smith, Arlee V.

We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803 nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

More Details

Electrically-pumped 850-nm micromirror VECSELs

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan

Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n-type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

More Details

Adsorption of myoglobin to Cu(II)-IDA and Ni(II)-IDA functionalized langmuir monolayers: Study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity

Langmuir

Kent, Michael S.; Yim, Hyun Y.; Sasaki, Darryl Y.; Satija, Sushil; Seo, Young S.; Majewski, J.

The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was ≤20 Å and the thickness increased almost linearly with increasing coverage to 42 Å. For Ni(II)-IDA, the thickness at low coverage was ∼38 Å and increased gradually with coverage to 47 Å. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA. © 2005 American Chemical Society.

More Details

Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine

Musculus, Mark P.B.

Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

More Details

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR)

Park, Byoung; Lee, Moo Y.; Ehgartner, Brian L.; Sobolik, Steven

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

More Details

Hypervelocity impact flash for missile-defense kill assessment and engagement analysis : experiments on Z

Lawrence, R.J.

Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two major Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.

More Details

Correlation and image compression for limited-bandwidth CCD

Thompson, Douglas

As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

More Details

Active polarimeter optical system laser hazard analysis

Augustoni, Arnold L.

A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

More Details

Umbra's system representation

Mcdonald, Michael J.

This document describes the Umbra System representation. Umbra System representation, initially developed in the spring of 2003, is implemented in Incr/Tcl using concepts borrowed from Carnegie Mellon University's Architecture Description Language (ADL) called Acme. In the spring of 2004 through January 2005, System was converted to Umbra 4, extended slightly, and adopted as the underlying software system for a variety of Umbra applications that support Complex Systems Engineering (CSE) and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser and Schema are not described in this document.

More Details

Variable focal length on-and off-axis deformable concave and convex mirror and its application for thermal lens compensation

Schwarz, Jens; Rambo, Patrick K.; Smith, Ian C.

We have improved deformable mirror approach to allow good parabolic deformation for efficient thermal lens compensation. Our design uses an annulus to push onto the back surface of a flat mirror substrate, simply supported at the outer edge, thereby creating a parabolic deformation within the encircled area. We built an assembly using a 25.4 mm diameter, 1 mm thick mirror with a wedge of less than 10 arc seconds that was deformed with a 12 mm diameter annulus at the back of the mirror. Using a Shack-Hartman wavefront sensor we performed careful measurements to characterize the performance of the mirrors.

More Details

Final test results for the Schott HCE on a LS-2 collector

Moss, Timothy A.; Brosseau, Douglas A.

Sandia National Laboratories has completed thermal performance testing on the Schott parabolic trough receiver using the LS-2 collector on the Sandia rotating platform at the National Solar Thermal Test Facility in Albuquerque, NM. This testing was funded as part of the US DOE Sun-Lab USA-Trough program. The receiver tested was a new Schott receiver, known as Heat Collector Elements (HCEs). Schott is a new manufacturer of trough HCEs. The Schott HCEs are 4m long; therefore, two were joined and mounted on the LS-2 collector module for the test. The Schott HCE design consists of a 70mm diameter high solar absorptance coated stainless steel (SS) tube encapsulated within a 125mm diameter Pyrex{reg_sign} glass tube with vacuum in the annulus formed between the SS and glass tube to minimize convection heat losses. The Schott HCE design is unique in two regards. First, the bellows used to compensate for the difference in thermal expansion between the metal and glass tube are inside the glass envelope rather than outside. Second, the composition of materials at the glass-to-metal seal has very similar thermal expansion coefficients making the joint less prone to breakage from thermal shock. Sandia National Laboratories provided both the azimuth and elevation collector module tracking systems used during the tests. The test results showed the efficiency of the Schott HCE to be very similar to current HCEs being manufactured by Solel. This testing provided performance verification for the use of Schott tubes with Solargenix trough collector assemblies at currently planned trough power plant projects in Arizona and Nevada.

More Details

Efficient numerical modeling of truncation effects and defects in finite periodic structures

There is a keen interest in using periodic structures to model such structures as phased arrays, frequency selective surfaces, and metamaterials. Recent interest has focused on modeling the truncation effects of periodic structures. The GIFFT (Green's function Interpolation using Fast Fourier Transform) method has recently been proposed as an efficient integral equation approach for handling moderate-to-large structures with essentially arbitrary (but identical) elements within each cell. The method uses an array mask--a listing of whether or not an element of the periodic structure is present at each potential cell location within the structure's bounding box--to simplify the handling of arbitrary array boundaries and missing elements. The interaction between adjacent cells is treated using the method of moments in its usual form,but periodicity reduces the number of distinct near-interactions over the entire structure to a 3 x 3 block matrix. The inverse of this block or even of its central block serves as an effective preconditioner. The calculation of interactions between non-adjacent cells relies on the following features: (1) For cell sizes less than a few wavelengths, the Green's function is sufficiently smooth that it may be interpolated accurately over both source and observation points within interacting cell pairs via equispaced Lagrange polynomial interpolation. (2) Periodicity of the interpolation points over the entire transverse dimensions of the array implies that the Green's function samples connecting source and observation cell interpolating polynomials form a discrete convolution matrix. (3) Basis and testing function projections for subdomains within a cell are onto the cell interpolation polynomials, and the resulting projection matrix is identical for every cell of the structure. These features imply that the matrix/vector product in an iterative scheme can be accelerated using FFT to perform the discrete convolution between the Green's function sample matrix and the column vector of surface current projections onto interpolation polynomials. This GIFFT approach, which shares many features with the AIM method, is found to be ideal for quasi-planar periodic structures. In this paper, we extend GIFFT to treat manufacturing defects in periodic structures that inevitably arise in producing nano-meter structures. Calculations for several structures of interest are presented. The main generalizations required are the following: (1) Both 'background' and 'defect' elements must now be separately defined in translatable unit cells. (2) The near-interaction block matrix must allow for the possibility of background-to-defect cell interactions. (3) Matrices of projections of both background and defect subdomain bases onto the interpolation polynomials must be defined and selected appropriately while forming the matrix/vector product.

More Details

Performance of an Alpha-IPEM

Doyle, B.L.

The ion photon emission microscope, or IPEM, is the first device that allows scientists to microscopically study the effects of single ions in air on semiconductors, microchips and even biological cells without having to focus the beam. Reported here is a prototype, the size of a conventional optical microscope, developed at Sandia. The alpha-IPEM, that employs alpha particles from a radioactive source, represents the first example of IBA imaging without an accelerator. The IPEM resolution is currently limited to 10 {micro}m, but we also report a gridded-phosphor approach that could improve this resolution to that of the optical microscope, or {approx} 1 {micro}m. Finally, we propose that a simple adaptation of the alpha-IPEM could be the only way to maintain the high utility of radiation effects microscopy into the future.

More Details

RF MEMS reconfigurable triangular patch antenna

Feldner, Lucas M.; Nordquist, Christopher D.

A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

More Details

Adaptive thinking & leadership simulation game training for special forces officers

Raybourn, Elaine M.

Complex problem solving approaches and novel strategies employed by the military at the squad, team, and commander level are often best learned experimentally. Since live action exercises can be costly, advances in simulation game training technology offer exciting ways to enhance current training. Computer games provide an environment for active, critical learning. Games open up possibilities for simultaneous learning on multiple levels; players may learn from contextual information embedded in the dynamics of the game, the organic process generated by the game, and through the risks, benefits, costs, outcomes, and rewards of alternative strategies that result from decision making. In the present paper we discuss a multiplayer computer game simulation created for the Adaptive Thinking & Leadership (ATL) Program to train Special Forces Team Leaders. The ATL training simulation consists of a scripted single-player and an immersive multiplayer environment for classroom use which leverages immersive computer game technology. We define adaptive thinking as consisting of competencies such as negotiation and consensus building skills, the ability to communicate effectively, analyze ambiguous situations, be self-aware, think innovatively, and critically use effective problem solving skills. Each of these competencies is an essential element of leader development training for the U.S. Army Special Forces. The ATL simulation is used to augment experiential learning in the curriculum for the U.S. Army JFK Special Warfare Center & School (SWCS) course in Adaptive Thinking & Leadership. The school is incorporating the ATL simulation game into two additional training pipelines (PSYOPS and Civil Affairs Qualification Courses) that are also concerned with developing cultural awareness, interpersonal communication adaptability, and rapport-building skills. In the present paper, we discuss the design, development, and deployment of the training simulation, and emphasize how the multiplayer simulation game is successfully used in the Special Forces Officer training program.

More Details

Temperature dependence and deuterium kinetic isotope effects in the HCO + NO reaction

Proposed for publication in the Journal of Photochemistry and Photobiology A : Chemistry.

Jusinski, Leonard E.

The reactions of HCO and DCO with NO have been measured by the laser photolysis/continuous-wave (CW) laser-induced fluorescence (LIF) method from 296 to 623 K, probing the ({tilde B}{sup 2}A{prime} {l_arrow} {tilde X}{sup 2}A{prime}) HCO (DCO) system. The HCO + NO rate coefficient is (1.81 {+-} 0.10) x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1} and the DCO + NO rate coefficient is (1.61 {+-} 0.12) x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1} at 296 K. Both rate coefficients decrease with increasing temperature between 296 and 623 K. The kinetic isotope effect is k{sub H}/k{sub D} = 1.12 {+-} 0.09 at 296 K and increases to 1.25 {+-} 0.15 at 623 K. The normal kinetic isotope effect supports abstraction as the principal mechanism for the reaction, in agreement with recent computational results.

More Details

Synthesis and characterization of the double-substituted perovskites LaxSr1-xCo1-yMnyO3-delta for use in high-temperature oxygen separations

Nenoff, Tina M.; Garino, Terry J.

Materials in the La{sub 0.1}Sr{sub 0.9}Co{sub 1-y}MnyO{sub 3-{delta}} (LSCM) family are potentially useful as ceramic membranes for high-temperature oxygen separations. A series of LSCM samples was synthesized by solid state methods and characterized by powder X-ray diffraction, thermogravimetric analysis, and four-probe conductivity. The materials were indexed in the cubic Pm-3m space group. TGA data implied that LSCM can reversibly absorb and desorb oxygen versus temperature and partial oxygen pressure, while powder diffraction data showed that the material maintained the cubic perovskite structure. Preliminary four-probe conductivity measurements signify p-type semiconducting behavior.

More Details

Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA

Park, Byoung; Hansen, Francis D.

This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6

More Details

Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures

Walsh, Timothy W.; Reese, Garth M.; Hetmaniuk, Ulrich

An a posteriori error estimator is developed for the eigenvalue analysis of three-dimensional heterogeneous elastic structures. It constitutes an extension of a well-known explicit estimator to heterogeneous structures. We prove that our estimates are independent of the variations in material properties and independent of the polynomial degree of finite elements. Finally, we study numerically the effectivity of this estimator on several model problems.

More Details

On the Design of Interfaces to Serial and Parallel Direct Solver Libraries

Sala, Marzio

Wereportonthedesignofgeneral,flexible,consistentandefficientinterfacestodirectsolveralgorithmsforthesolutionofsystemsoflinearequations.Wesupposethatsuchalgorithmsareavailableinformofsoftwarelibraries,andweintroduceaframeworktofacilitatetheusageoftheselibraries.Thisframeworkiscomposedbytwocomponents:anabstractmatrixinterfacetoaccessthelinearsystemmatrixelements,andanabstractsolverinterfacethatcontrolsthesolutionofthelinearsystem.Wedescribeaconcreteimplementationoftheproposedframework,whichallowsahigh-levelviewandusageofmostofthecurrentlyavailablelibrariesthatimplementsdirectsolutionmethodsforlinearsystems.Wecommentontheadvantagesandlimitationoftheframework.3

More Details

Effects of evolving surface morphology on yield during focused ion beam milling of carbon

Proposed for publication in Applied Surface Science.

Adams, David P.; Mayer, Thomas M.; Archuleta, Kim

We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({Theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {Theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {Theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

More Details

Scanning probe studies of water nucleation on aluminum oxide and gold surfaces

Proposed for publication in Applied Surface Science.

Missert, Nancy; Copeland, Robert

The nucleation of nanoscale water at surfaces in humid environments is sensitive to several factors, including the details of the surface morphology, ability of the surface to hydrate and the presence of contaminants. Tapping mode atomic force microscopy was used to investigate the nucleation process as a function of relative humidity (RH) on passive aluminum and gold thin films. Films exposed to the ambient environment prior to RH exposure showed discrete structures with lateral sizes ranging from 10 to 100 nm only at RH > 70%. These structures formed preferentially at grain boundaries, triple points and regions with significant topography such as protruding grains. The morphology of the passive aluminum surface is permanently altered at the sites where discrete structures were observed; nodules with heights ranging from 0.5 to 2 nm persist even after reducing the RH to <2%. The gold surface does not show such a permanent change in morphology after reducing the RH. Passive aluminum films exposed to high RH immediately after growth (e.g. no ambient exposure) do not show discrete structures even at the highest RH exposures of 90%, suggesting a hydrophilic surface and the importance of surface hydrocarbon contaminants in affecting the distribution of the water layer.

More Details

Polycrystalline diamond MEMS resonator technology for sensor applications

Proposed for publication in Diamond and Related Materials

Sullivan, John P.

Due to material limitations of poly-Si resonators, polycrystalline diamond (poly-C) has been explored as a new MEMS resonator material. The poly-C resonators are designed, fabricated and tested using electrostatic (Michigan State University) and piezoelectric (Sandia National Laboratories) actuation methods, and the results are compared. For comparable resonator structures, although the resonance frequencies are similar, the measured Q values in the ranges of 1000-2000 and 10,000-15,000 are obtained for electrostatic and piezoelectric actuation methods, respectively. The difference in Q for the two methods is related to different pressures used during the measurement and not to the method of measurement. For the poly-C cantilever beam resonators, the highest value of their quality factor (Q) is reported for the first time (15,263).

More Details

Switching surface chemistry with supramolecular machines

Proposed for publication in Nanoletters.

Bunker, B.C.; Huber, Dale L.; Kelley, Michael J.

Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

More Details

Radiation-induced off-state leakage current in commercial power MOSFETs

Proposed for publication in the IEEE Transactions on Nuclear Science.

Felix, James A.; Shaneyfelt, Marty R.; Dodd, Paul E.; Draper, Bruce L.; Schwank, James R.; Dalton, Scott M.

The total dose hardness of several commercial power MOSFET technologies is examined. After exposure to 20 krad(SiO{sub 2}) most of the n- and p-channel devices examined in this work show substantial (2 to 6 orders of magnitude) increases in off-state leakage current. For the n-channel devices, the increase in radiation-induced leakage current follows standard behavior for moderately thick gate oxides, i.e., the increase in leakage current is dominated by large negative threshold voltage shifts, which cause the transistor to be partially on even when no bias is applied to the gate electrode. N-channel devices biased during irradiation show a significantly larger leakage current increase than grounded devices. The increase in leakage current for the p-channel devices, however, was unexpected. For the p-channel devices, it is shown using electrical characterization and simulation that the radiation-induced leakage current increase is related to an increase in the reverse bias leakage characteristics of the gated diode which is formed by the drain epitaxial layer and the body. This mechanism does not significantly contribute to radiation-induced leakage current in typical p-channel MOS transistors. The p-channel leakage current increase is nearly identical for both biased and grounded irradiations and therefore has serious implications for long duration missions since even devices which are usually powered off could show significant degradation and potentially fail.

More Details

Reevaluating nuclear safety and security in a post 9/11 era

Brown, Lisa M.

This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

More Details

Interactive design center

Pomplun, Alan R.

Sandia's advanced computing resources provide researchers, engineers and analysts with the ability to develop and render highly detailed large-scale models and simulations. To take full advantage of these multi-million data point visualizations, display systems with comparable pixel counts are needed. The Interactive Design Center (IDC) is a second generation visualization theater designed to meet this need. The main display integrates twenty-seven projectors in a 9-wide by 3-high array with a total display resolution of more than 35 million pixels. Six individual SmartBoard displays offer interactive capabilities that include on-screen annotation and touch panel control of the facility's display systems. This report details the design, implementation and operation of this innovative facility.

More Details

Summary tables of six commercially available entry control and contraband detection technologies

Hunter, John A.

Existing contraband detection and entry control devices such as metal detectors, X-ray machines, and radiation monitors were investigated for their capability to operate in an automated environment. In addition, a limited number of new devices for detection of explosives, chemicals, and biological agents were investigated for their feasibility for inclusion in future physical security systems. The tables in this document resulted from this investigation, which was part of a conceptual design upgrade for the United States Mints. This summary of commercially available technologies was written to provide a reference for physical security upgrades at other sites.

More Details

Arsenic ion implant energy effects on CMOS gate oxide hardness

Proposed for publication in the IEEE Transactions on Nuclear Science.

Draper, Bruce L.; Shaneyfelt, Marty R.; Young, Ralph W.; Headley, Thomas J.; Dondero, Richard

Under conditions that were predicted as 'safe' by well-established TCAD packages, radiation hardness can still be significantly degraded by a few lucky arsenic ions reaching the gate oxide during self-aligned CMOS source/drain ion implantation. The most likely explanation is that both oxide traps and interface traps are created when ions penetrate and damage the gate oxide after channeling or traveling along polysilicon grain boundaries during the implantation process.

More Details

Hybrid simulations of Z-Pinches in support of wire array implosion experiments at NTF

Coverdale, Christine A.; Jones, Brent M.; Deeney, Christopher D.

Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility.

More Details

Circuit Simulations of a 1 MV LTD for radiography

Leckbee, Joshua; Maenchen, John E.; Portillo, Salvador; Molina, Isidro

A 1 MV linear transformer driver (LTD), capable of driving a radiographic diode load, has been built and tested. A circuit model of this accelerator has been developed using the BERTHA circuit simulation code. Simulations are compared to data from power-flow experiments utilizing a large area electron-beam diode load. Results show that the simulation model performs well in modeling the baseline operation of the accelerator. In addition, the circuit model has been used to predict several possible fault modes. Simulations of switch prefires, main capacitor failure, vacuum insulator flashover, and core saturation have been used to estimate the probability of inducing further failures and the impact on the load voltage and current.

More Details

Reliability assessment of a 1 MV LTD

Leckbee, Joshua; Maenchen, John E.; Portillo, Salvador; Molina, Isidro

A 1 MV linear transformer driver (LTD) is being tested with a large area e-beam diode load at Sandia National Laboratories (SNL). The experiments will be utilized to determine the repeatability of the output pulse and the reliability of the components. The 1 MV accelerator is being used to determine the feasibility of designing a 6 MV LTD for radiography experiments. The peak voltage, risetime, and pulse width as well as the cavity timing jitter are analyzed to determine the repeatability of the output pulse.

More Details

Parallel hypergraph partitioning for scientific computing

Boman, Erik G.; Devine, Karen; Heaphy, Robert T.; Hendrickson, Bruce A.

Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.

More Details

An analysis of the survivability of sensor darts in impacts with trees

Gardner, David R.

A methodology was developed for computing the probability that the sensor dart for the 'Near Real-Time Site Characterization for Assured HDBT Defeat' Grand-Challenge LDRD project will survive deployment over a forested region. The probability can be decomposed into three approximately independent probabilities that account for forest coverage, branch density and the physics of an impact between the dart and a tree branch. The probability that a dart survives an impact with a tree branch was determined from the deflection induced by the impact. If a dart that was deflected so that it impacted the ground at an angle of attack exceeding a user-specified, threshold value, the dart was assumed to not survive the impact with the branch; otherwise it was assumed to have survived. A computer code was developed for calculating dart angle of attack at impact with the ground and a Monte Carlo scheme was used to calculate the probability distribution of a sensor dart surviving an impact with a branch as a function of branch radius, length, and height from the ground. Both an early prototype design and the current dart design were used in these studies. As a general rule of thumb, it we observed that for reasonably generic trees and for a threshold angle of attack of 5{sup o} (which is conservative for dart survival), the probability of reaching the ground with an angle of attack less than the threshold is on the order of 30% for the prototype dart design and 60% for the current dart design, though these numbers should be treated with some caution.

More Details

An analysis of uranium dispersal and health effects using a Gulf War case study

Marshall, Albert C.

The study described in this report used mathematical modeling to estimate health risks from exposure to depleted uranium (DU) during the 1991 Gulf War for both U.S. troops and nearby Iraqi civilians. The analysis found that the risks of DU-induced leukemia or birth defects are far too small to result in an observable increase in these health effects among exposed veterans or Iraqi civilians. Only a few veterans in vehicles accidentally struck by U.S. DU munitions are predicted to have inhaled sufficient quantities of DU particulate to incur any significant health risk (i.e., the possibility of temporary kidney damage from the chemical toxicity of uranium and about a 1% chance of fatal lung cancer). The health risk to all downwind civilians is predicted to be extremely small. Recommendations for monitoring are made for certain exposed groups. Although the study found fairly large calculational uncertainties, the models developed and used are generally valid. The analysis was also used to assess potential uranium health hazards for workers in the weapons complex. No illnesses are projected for uranium workers following standard guidelines; nonetheless, some research suggests that more conservative guidelines should be considered.

More Details

Sandia National Laboratories, California pollution prevention annual program report for calendar year 2005

Farren, Laurie J.

The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the ''SNL/CA Environmental Management System Program Manual''. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA.

More Details

Comparison of data from three PIV configurations for a supersonic jet in transonic crossflow

Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.

Particle image velocimetry (PIV) data have been acquired using three different configurations in the far-field of the interaction of a transverse supersonic jet with a transonic crossflow. The configurations included two-dimensional PIV in the centerline streamwise plane at two overlapping stations, as well as stereoscopic PIV in both the same streamwise plane and the crossplane. The streamwise data show the downstream evolution of the interaction whereas the crossplane data directly reveal its vortex structure. The measurement planes intersect at a common line, allowing a comparison of those mean velocity components and turbulent stresses common to all configurations. All data from the streamwise plane agree to within their estimated uncertainties, but data from the crossplane exhibit reduced velocity and turbulent stress magnitudes by a small but significant degree. Additionally, the vertical positions of the peak velocities are slightly nearer the wall for the crossplane configuration. This comparison suggests that routine methods of uncertainty quantification for data used in the validation of computational models may not fully capture the error sources of an experiment.

More Details

A study of binder materials subjected to isentropic compression loading

Baer, M.R.; Hall, Clint A.

Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of {approx}42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

More Details

Radiation-induced optical response of single-crystal and polycrystalline YAG

Thomes, William J.; Meister, Dorothy C.

Exposure of optical materials to transient-ionizing-radiation fields can give rise to transient and/or permanent photodarkening effects. In laser materials, such as YAG, such induced optical loss can result in significant degradation of the lasing characteristic of the material, making its selection for optical device applications in radiation environments unfeasible. In the present study, the effects of ionizing radiation on the optical response of undoped and 1.1% Nd-doped single-crystal and polycrystalline YAG have been investigated. In the undoped materials it is seen that both laser materials exhibit significant loss at the 1.06 ?m lasing wavelength following exposure to a 40 krad, 30 nsec pulse of gamma radiation. In the undoped single-crystal samples, the transmission loss is initially large but exhibits a rapid recovery. By contrast, the undoped polycrystalline YAG experiences an initial 100% loss in transmission, becoming totally opaque at 1.06 ?m following the radiation pulse. This loss is slow to recover and a large residual permanent photodarkening effect is observed. Nd-doping improves the optical response of the materials in that the radiation-induced optical loss is substantially smaller in both the polycrystalline and single-crystal YAG samples. Preliminary results on the radiation response of elevated-temperature samples will also be reported.

More Details

Design considerations for multi-fiber injection

Thomes, William J.; Dickey, Fred M.

Applications requiring injection of a high-power multimode laser into multiple fibers with equal energies, or specific energy ratios, provide unique design challenges. As with most all systems, engineering trades must balance competing requirements to obtain an optimal overall design. This is particularly true when fabrication issues are considered in the design process. A few of these competing design requirements are discussed in this conceptually simple system. This fiber injection system consists of three components; a refractive beam homogenizer, a diffractive beamsplitter, and a fiber array. We show the design process, starting with first-order design, for an example fiber injection system that couples a high-power YAG laser into seven fibers. Design goals include high efficiency, good beamsplitting uniformity, compact overall size, maximum mode filling of the fibers, and low cost of fabrication and assembly.

More Details

Training programs for the systems approach to nuclear security

Ellis, Doris E.

In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

More Details

Simulations of non-uniform embossing : the effect of asymmetric neighbor cavities on polymer flow during nanoimprint lithography

Proposed for publication in the Journal of Vacuum Science and Technology B.

Sun, Amy C.; Schunk, Peter R.

This article presents continuum simulations of viscous polymer flow during nanoimprint lithography (NIL) for embossing tools having irregular spacings and sizes. Simulations vary nonuniform embossing tool geometry to distinguish geometric quantities governing cavity filling order, polymer peak deformation, and global mold filling times. A characteristic NIL velocity predicts cavity filling order. In general, small cavities fill more quickly than large cavities, while cavity spacing modulates polymer deformation mode. Individual cavity size, not total filling volume, dominates replication time, with large differences in individual cavity size resulting in nonuniform, squeeze flow filling. High density features can be modeled as a solid indenter in squeeze flow to accurately predict polymer flow and allow for optimization of wafer-scale replication. The present simulations make it possible to design imprint templates capable of distributing pressure evenly across the mold surface and facilitating symmetric polymer flow over large areas to prevent mold deformation and nonuniform residual layer thickness.

More Details

Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices

Proposed for publication in the IEEE Transactions on Nuclear Science.

Schwank, James R.; Shaneyfelt, Marty R.

This paper investigates the transient response of 50-nm gate length fully and partially depleted SOI and bulk devices to pulsed laser and heavy ion microbeam irradiations. The measured transient signals on 50-nm fully depleted devices are very short, and the collected charge is small compared to older 0.25-{micro}m generation SOI and bulk devices. We analyze in detail the influence of the SOI architecture (fully or partially depleted) on the pulse duration and the amount of bipolar amplification. For bulk devices, the doping engineering is shown to have large effects on the duration of the transient signals and on the charge collection efficiency.

More Details

Shape memory and pseudoelasticity in metal nanowires

Proposed for publication in Nature Materials.

Zimmerman, Jonathan A.

Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity.

More Details

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary

Sorenson, Ken B.; Borek, Theodore T.; Dickey, Roy R.; Brockmann, John E.; Lucero, Daniel A.; Gregson, Michael W.; Coats, Richard L.

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

More Details

Remotely mapping river water quality using multivariate regression with prediction validation

Stork, Christopher L.

Remote spectral sensing offers an attractive means of mapping river water quality over wide spatial regions. While previous research has focused on development of spectral indices and models to predict river water quality based on remote images, little attention has been paid to subsequent validation of these predictions. To address this oversight, we describe a retrospective analysis of remote, multispectral Compact Airborne Spectrographic Imager (CASI) images of the Ohio River and its Licking River and Little Miami River tributaries. In conjunction with the CASI acquisitions, ground truth measurements of chlorophyll-a concentration and turbidity were made for a small set of locations in the Ohio River. Partial least squares regression models relating the remote river images to ground truth measurements of chlorophyll-a concentration and turbidity for the Ohio River were developed. Employing these multivariate models, chlorophyll-a concentrations and turbidity levels were predicted in river pixels lacking ground truth measurements, generating detailed estimated water quality maps. An important but often neglected step in the regression process is to validate prediction results using a spectral residual statistic. For both the chlorophyll-a and turbidity regression models, a spectral residual value was calculated for each river pixel and compared to the associated statistical confidence limit for the model. These spectral residual statistic results revealed that while the chlorophyll-a and turbidity models could validly be applied to a vast majority of Ohio River and Licking River pixels, application of these models to Little Miami River pixels was inappropriate due to an unmodeled source of spectral variation.

More Details

Discrete element simulation of granular flow in a modified Couette cell

Lechman, Jeremy B.; Grest, Gary S.

Slow, dense granular flows often exhibit thin, localized regions of particle motion, called shear bands, separating largely solid-like regions. Recent experiments using a split-bottom Couette cell found that the width of the shear zone grew as the pack height increased and the azimuthal velocities when rescaled fall on a universal curve regardless of the particle properties. Here we present large-scale Discrete Element simulations of a similar system for packs of varying height up to 180,000 monodisperse spheres. The onset and evolution of granular shear flow is investigated as a function of height. We find a transition in the nature of the shear as a characteristic height is exceeded. Below this height there is a central quasi-solid core; above this height we observe the onset of additional axial shear associated with a torsional failure mode of the inner core. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height while the axial width remains narrow and fixed.

More Details

Corrective measures evaluation report for technical area-v groundwater

Collins, Sue S.

This Corrective Measures Evaluation Report was prepared as directed by the Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for contaminated groundwater at Technical Area V. Supporting information includes background information about the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. Evaluation of remedial alternatives included identification and description of four remedial alternatives, an overview of the evaluation criteria and approach, qualitative and quantitative evaluation of remedial alternatives, and selection of the preferred remedial alternative. As a result of the Corrective Measures Evaluation, it was determined that monitored natural attenuation of all contaminants of concern (trichloroethene, tetrachloroethene, and nitrate) was the preferred remedial alternative for implementation as the corrective measure to remediate contaminated groundwater at Technical Area V of Sandia National Laboratories/New Mexico. Finally, design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are presented.

More Details

Hybrid manufacturing : integrating direct write and sterolithography

Palmer, Jeremy; Chavez, Bart D.; Gallegos, Phillip L.

A commercial stereolithography (SL) machine was modified to integrate fluid dispensing or direct-write (DW) technology with SL in an integrated manufacturing environment for automated and efficient hybrid manufacturing of complex electrical devices, combining three-dimensional (3D) electrical circuitry with SL-manufactured parts. The modified SL system operates similarly to a commercially available machine, although build interrupts were used to stop and start the SL build while depositing fluid using the DW system. An additional linear encoder was attached to the SL platform z-stage and used to maintain accurate part registration during the SL and DW build processes. Individual STL files were required as part of the manufacturing process plan. The DW system employed a three-axis translation mechanism that was integrated with the commercial SL machine. Registration between the SL part, SL laser and the DW nozzle was maintained through the use of 0.025-inch diameter cylindrical reference holes manufactured in the part during SL. After depositing conductive ink using DW, the SL laser was commanded to trace the profile until the ink was cured. The current system allows for easy exchange between SL and DW in order to manufacture fully functional 3D electrical circuits and structures in a semi-automated environment. To demonstrate the manufacturing capabilities, the hybrid SL/DW setup was used to make a simple multi-layer SL part with embedded circuitry. This hybrid system is not intended to function as a commercial system, it is intended for experimental demonstration only. This hybrid SL/DW system has the potential for manufacturing fully functional electromechanical devices that are more compact, less expensive, and more reliable than their conventional predecessors, and work is ongoing in order to fully automate the current system.

More Details

Multivariate statistical approaches for electron backscattered diffraction

Kotula, Paul G.; Michael, Joseph R.

Electron backscattered diffraction (EBSD) is a widely used technique for both identifying the crystallographic phase and for mapping the orientation of crystalline materials on the micron length scale. Often the operating conditions necessary for phase identification are not suitable for orientation mapping and vice versa. In an effort to optimize the speed involved in the mapping technique, pattern quality is sacrificed and the wealth of information present in an EBSD pattern is compressed to basically 4 values: a matched phase and three Euler angles. However, ab initio identification of phases from EBSD patterns requires high quality patterns and fairly intense computation. Spectrum imaging is an analytical approach that may offer some solutions to the aforementioned problems. Spectrum imaging consists of collecting a whole spectrum at each pixel in a mapping style measurement. This large set of data is then analyzed using multivariate statistical analysis (MSA) techniques such as principle components analysis, multivariate curve resolution, or other least squares based techniques. The result of these calculations is a set of component spectral shapes with corresponding abundances that allow the analyst to extract the greatest amount of physically relevant information from an otherwise enormous data set. Spectrum imaging has been used successfully in EDX microanalysis (both in the SEM and TEM), TOF-SIMS, WDS, and EELS. To examine the potential benefits of the spectrum imaging approach for EBSD data, a series of basic experiments and calculations were run. Test data sets (20 x 20 patterns in .jpeg format) on polycrystalline Al and on the directionally solidified eutectic oxide, CoO/ZrO{sub 2}(CaO), were collected using the HKL Channel 5 system with a Nordlys detector under normal mapping conditions. The data was collected on a FEI dual beam FIB (model DB235) and a Zeiss (Supra 55 VP) SEM at 20keV for Al and CoO/ZrO{sub 2}(CaO), respectively. The data sets were analyzed according to the schematic shown in Figure 1. Each EBSD pattern was hough transformed, unzipped into a 1-D vector of channels with intensities ranging from 0-255, and then added to an overall data matrix. A range of treatments (edge/no edge detection, spatial simplicity/spectral simplicity, etc.) were examined to determine the optimal way of treating the data. The multivariate analyses were performed using the AXSIA code developed at Sandia National Laboratories. The MSA techniques were able to correctly identify individual grains in the Al sample and individual phases in the CoO/ZrO{sub 2}(CaO) sample. For each component EBSD pattern identified from the Al data, a corresponding color map of abundance can be seen which clearly corresponds to a single grain (Figure 2). The success in the CoO/ZrO{sub 2}(CaO) sample is particularly notable due to both phases sharing the Fm-3m space group which would confuse most autoindexing routines. The range of analytical treatments identified two extremes in results: a minimal number of components (patterns) with only kikuchi line positions present or a larger number of components with full intensity information present. The further application of these results to phase mapping will be discussed.

More Details

Two dimensional modeling and simulation of mass transport in microfabricated preconcentrators

Proposed for publication in IEEE Sensors Journal.

Robinson, Alex

The adsorption and desorption behavior of a planar microfabricated preconcentrator (PC) has been modeled and simulated using the computational fluid dynamics (CFD) package CFDRC-ACE+trade. By comparison with the results of a designed experiment, model parameters were determined. Assuming a first-order reaction for the adsorption of a light hydrocarbon chemical analyte onto the PC adsorbent and a unity-value sticking coefficient, a rate constant of 36,500 s{sup -1} was obtained. This compares favorably with the value of 25,300 s{sup -1} obtained by application of the Modified-Wheeler equation. The modeled rate constant depends on the concentration of adsorbent sites, estimated to be 6.94 ldr 10{sup -8} kmol/m{sup 2} for the Carboxen 1000 adsorbent used. Using the integral method, desorption was found to be first order with an Arrhenius temperature dependence and an activation energy of 30.1 kj/mol. Validation of this model is reported herein, including the use of Aris-Taylor dispersion to predict the influence of fluidics surrounding the PC. A maximum in desorption peak area with flow rate, predicted from a quadratic fit to the results of the designed experiment, was not observed in the 2-D simulation. Either approximations in the simulated model or the nonphysical nature of the quadratic fit are responsible. Despite the apparent simplicity of the model, the simulation is internally self consistent and capable of predicting performance of new device designs. To apply the method to other analytes and other adsorbent materials, only a limited number of comparisons to experiment are required to obtain the necessary rate constants.

More Details

Hugoniot and strength behavior of silicon carbide

Proposed for publication in the Journal of Applied Physics.

Vogler, Tracy J.; Reinhart, William D.; Chhabildas, L.C.

The shock behavior of two varieties of the ceramic silicon carbide was investigated through a series of time-resolved plate impact experiments reaching stresses of over 140 GPa. The Hugoniot data obtained are consistent for the two varieties tested as well as with most data from the literature. Through the use of reshock and release configurations, reloading and unloading responses for the material were found. Analysis of these responses provides a measure of the ceramic's strength behavior as quantified by the shear stress and the strength in the Hugoniot state. While previous strength measurements were limited to stresses of 20-25 GPa, measurements were made to 105 GPa in the current study. The initial unloading response is found to be elastic to stresses as high as 105 GPa, the level at which a solid-to-solid phase transformation is observed. While the unloading response lies significantly below the Hugoniot, the reloading response essentially follows it. This differs significantly from previous results for B{sub 4}C and Al{sub 2}O{sub 3}. The strength of the material increases by about 50% at stresses of 50-75 GPa before falling off somewhat as the phase transformation is approached. Thus, the strength behavior of SiC in planar impact experiments could be characterized as metal-like in character. The previously reported phase transformation at {approx}105 GPa was readily detected by the reshock technique, but it initially eluded detection with traditional shock experiments. This illustrates the utility of the reshock technique for identifying phase transformations. The transformation in SiC was found to occur at about 104 GPa with an associated volume change of about 9%.

More Details

Scaling of energy deposition in fast ignition targets

Mehlhorn, Thomas A.; Slutz, Stephen A.

We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm{sup 3}, with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10{sup 21}W/cm{sup 2}, the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

More Details

Effects of current density on the structure of Ni and Ni-Mn electrodeposits

Proposed for publication in the Journal of the Applied Electrochemistry.

Marquis, Emmanuelle A.; Talin, Albert A.; Goods, Steven H.

Grain size and texture of Ni electrodeposited from sulfamate baths depend greatly on current density. Increasing grain size is observed with increasing current density and the deposit texture changes from (110) at current densities lower than 5 mA cm{sup -2} to (100) for higher current densities. Co-deposition of Mn modifies the deposit structure by favoring the growth of the (110) texture and decreasing the average grain size even as the current density increases. While the average Mn film content increases with increasing current density, local Mn concentrations are a more complex function of deposition parameters, as indicated by atom probe tomography measurements. In both direct-current plated and pulse plated films, large variations on a nanometer scale in local Mn concentration are observed.

More Details

Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy

Proposed for publication in Acta Materialla.

Marquis, Emmanuelle A.

The effects of Mg alloying on the temporal evolution of Al{sub 3}Sc (L1{sub 2} structure) nanoscale precipitates are investigated, focusing on the morphology and coarsening kinetics of Al{sub 3}Sc precipitates in an Al-2.2 Mg-0.12 Sc at.% alloy aged between 300 and 400 C. Approximately spheroidal precipitates are obtained after aging at 300 C and irregular morphologies are observed at 400 C. The coarsening behavior is studied using conventional and high-resolution transmission electron microscopies to obtain the temporal evolution of the precipitate radius, and atom-probe tomography is employed to measure the Sc concentration in the {alpha}-matrix. The coarsening kinetics are analyzed using a coarsening model developed by Kuehmann and Voorhees for ternary systems [Kuehmann CJ, Voorhees PW. Metall Mater Trans A 1996;27:937]. Values of the interfacial free energy and diffusion coefficient for Sc diffusion in this Al-Mg-Sc alloy at 300 C are independently calculated, and are in good agreement with the calculated value of interfacial free energy and the experimental diffusivity obtained for the Al-Sc system.

More Details

Higher-order web link analysis using multilinear algebra

Bader, Brett W.; Kenny, Joseph

More Details

Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy: experiments and computations

Proposed for publication in Acta Materialla.

Marquis, Emmanuelle A.

Controlling the distribution of chemical constituents within complex, structurally heterogeneous systems represents one of the fundamental challenges of alloy design. We demonstrate how the combination of recent developments in sophisticated experimental high resolution characterization techniques and ab initio theoretical methods provide the basis for a detailed level of understanding of the microscopic factors governing compositional distributions in metallic alloys. In a study of the partitioning of Mg in two-phase ternary Al-Sc-Mg alloys by atom-probe tomography, we identify a large Mg concentration enhancement at the coherent {alpha}-Al/Al{sub 3}Sc heterophase interface with a relative Gibbsian interfacial excess of Mg with respect to Al and Sc, {Lambda}{sub Mg}{sup rel}, equal to 1.9 {+-} 0.5 atom nm{sup -2}. The corresponding calculated value of {Lambda}{sub Mg}{sup rel} is -1.2 atom nm{sup -2}. Theoretical ab initio investigations establish an equilibrium driving force for Mg interfacial segregation that is primarily chemical in nature and reflects the strength of the Mg-Sc interactions in an Al-rich alloy.

More Details

Meaningful statistical analysis of large computational clusters

Gentile, Ann C.; Marzouk, Youssef M.; Pebay, Philippe P.

Effective monitoring of large computational clusters demands the analysis of a vast amount of raw data from a large number of machines. The fundamental interactions of the system are not, however, well-defined, making it difficult to draw meaningful conclusions from this data, even if one were able to efficiently handle and process it. In this paper we show that computational clusters, because they are comprised of a large number of identical machines, behave in a statistically meaningful fashion. We therefore can employ normal statistical methods to derive information about individual systems and their environment and to detect problems sooner than with traditional mechanisms. We discuss design details necessary to use these methods on a large system in a timely and low-impact fashion.

More Details

Use of electrochromic materials in adaptive optics

Kammler, Daniel; Yelton, W.G.; Verley, Jason C.

Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction of a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.

More Details

Simulation of lipid bilayers using coarse grained methods

Stevens, Mark J.

There are many important biological processes involving lipid bilayers on times scales beyond that accessible by atomistic simulations. We have developed coarse-grained, bead-spring models of lipid molecules to treat membrane fusion, domain formation and the general physical characteristics of lipid bilayers. A key aspect of these coarse-grained models is that the liquid nature of a bilayer is explicitly present in the simulations; the lipids diffuse far beyond their neighbors in contrast to atomistic simulations. With these models self-assembly into a bilayer starting from a random configuration of lipids and solvent is readily simulated. We have performed extensive simulations to characterize these lipid models in single component lipid bilayers. For a variety of tail lengths, the area per lipid as a function of temperature has been calculated; the liquid-gel transition has been characterized. Models have been developed for a variety of lipids including double bonds in the lipid tails. Simulation results will be presented for fusion and domain formation.

More Details

Accelerating list management for MPI

Hemmert, Karl S.; Rodrigues, Arun; Underwood, Keith D.

The latency and throughput of MPI messages are critically important to a range of parallel scientific applications. In many modern networks, both of these performance characteristics are largely driven by the performance of a processor on the network interface. Because of the semantics of MPI, this embedded processor is forced to traverse a linked list of posted receives each time a message is received. As this list grows long, the latency of message reception grows and the throughput of MPI messages decreases. This paper presents a novel hardware feature to handle list management functions on a network interface. By moving functions such as list insertion, list traversal, and list deletion to the hardware unit, latencies are decreased by up to 20% in the zero length queue case with dramatic improvements in the presence of long queues. Similarly, the throughput is increased by up to 10% in the zero length queue case and by nearly 100% in the presence queues of 30 messages.

More Details

Thermonuclear and beam fusion in deuterium Z-pinch implosions : theory and modeling

Deeney, Christopher D.; Ruiz, Carlos L.; Coverdale, Christine A.

The conclusions of this report are: (1) 1D and 2D RMHD simulations indicate feasibility of producing high thermonuclear neutron yields in deuterium and DT gas-puff Z-pinches -- (a) Z 1.7 x 10{sup 13} DD neutrons at 70 kV, 13 MA (Z1384); (b) (3 to 6) x 10{sup 14} at 90 kV, 17 MA (Z1422); (c) Predicted for ZR 2 x 10{sup 15} DD and 6 x 10{sup 16} DT neutrons; (2) Theory and modeling issues -- collisionless ions, nonthermal ions; (3) Experimental data on the origin of the neutrons not yet conclusive, need more shots; and (4) Applications -- (a) Fusion 2.5 and 14 MeV neutron source; (b) Pulsed subcritical neutron source with uranium blanket for {approx}10x neutron and {approx}1000x energy multiplication (Smirnov, Feoktistov and Klimov); and (c) Fusion-assisted keV x-ray plasma radiation source.

More Details

Isentropic compressions experiments for mesoscale studies of energetic composites

Baer, M.R.

New experimental diagnostics and computational modeling provide an unprecedented means for improving the understanding of energetic material behavior at the mesoscale (grain or crystal ensemble levels). This study focuses on the determination of appropriate constitutive and EOS property data of the constituents of an energetic composite at high stress and moderate strain-rate states. The Sandia Z accelerator is used to determine the mechanical response of energetic composites via isentropic ramp wave compression loading. In this paper we describe an energy source method in CTH that models ramp loading for the analysis of ICE experiments. This approach is applied to design experimental configurations to probe the constituent response of PBX 9501 subjected to {approx}40 Kbar ramp load over 300 ns duration. Multiple VISAR are used to determine the averaged response of the composite material in comparison to the individual constituents including the effects of anisotropy of HMX crystals and the interactions of fine crystallites with binder material.

More Details

Modeling, simulation, and testing of the mechanical dynamics of and RF MEMS switch

Sumali, Hartono (Anton); Epp, David S.; Dyck, Christopher

Mechanical dynamics can be a determining factor for the switching speed of radio-frequency microelectromechanical systems (RF MEMS) switches. This paper presents the simulation of the mechanical motion of a microswitch under actuation. The switch has a plate suspended by springs. When an electrostatic actuation is applied, the plate moves toward the substrate and closes the switch. Simulations are calculated via a high-fidelity finite element model that couples solid dynamics with electrostatic actuation. It incorporates non-linear coupled dynamics and accommodates fabrication variations. Experimental modal analysis gives results in the frequency domain that verifies the natural frequencies and mode shapes predicted by the model. An effective 1D model is created and used to calculate an actuation voltage waveform that minimizes switch velocity at closure. In the experiment, the switch is actuated with this actuation voltage, and the displacements of the switch at various points are measured using a laser Doppler velocimeter through a microscope. The experiments are repeated on several switches from different batches. The experimental results verify the model.

More Details
Results 85801–86000 of 99,299
Results 85801–86000 of 99,299