Publications

17 Results

Search results

Jump to search filters

EXACT: The experimental algorithmics computational toolkit

Proceedings of the 2007 Workshop on Experimental Computer Science

Hart, William E.; Berry, Jonathan W.; Heaphy, Robert T.; Phillips, Cynthia A.

In this paper, we introduce EXACT, the EXperimental Algorithmics Computational Toolkit. EXACT is a software framework for describing, controlling, and analyzing computer experiments. It provides the experimentalist with convenient software tools to ease and organize the entire experimental process, including the description of factors and levels, the design of experiments, the control of experimental runs, the archiving of results, and analysis of results. As a case study for EXACT, we describe its interaction with FAST, the Sandia Framework for Agile Software Testing. EXACT and FAST now manage the nightly testing of several large software projects at Sandia. We also discuss EXACT's advanced features, which include a driver module that controls complex experiments such as comparisons of parallel algorithms. Copyright 2007 ACM.

More Details

Penetrator reliability investigation and design exploration : from conventional design processes to innovative uncertainty-capturing algorithms

Swiler, Laura P.; Hough, Patricia D.; Gray, Genetha A.; Chiesa, Michael L.; Heaphy, Robert T.; Thomas, Stephen W.; Trucano, Timothy G.

This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0

Boucheron, Edward A.; Sturtevant, Judy E.; Drake, Richard R.; Edwards, Harold C.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Minana, Molly A.; Pavlakos, Constantine P.; Schofield, Joseph R.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0

Drake, Richard R.; Sturtevant, Judy E.; Boucheron, Edward A.; Edwards, Harold C.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Schofield, Joseph R.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

Parallel hypergraph partitioning for scientific computing

Boman, Erik G.; Devine, Karen D.; Heaphy, Robert T.; Hendrickson, Bruce A.

Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0

Boucheron, Edward A.; Schofield, Joseph R.; Drake, Richard R.; Edwards, Harold C.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Sturtevant, Judy E.

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

More Details

Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0

Boucheron, Edward A.; Schofield, Joseph R.; Drake, Richard R.; Minana, Molly A.; Forsythe, Christi A.; Heaphy, Robert T.; Hodges, Ann L.; Pavlakos, Constantine P.; Sturtevant, Judy E.

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

More Details

LDRD report : parallel repartitioning for optimal solver performance

Devine, Karen D.; Boman, Erik G.; Devine, Karen D.; Heaphy, Robert T.; Hendrickson, Bruce A.; Heroux, Michael A.

We have developed infrastructure, utilities and partitioning methods to improve data partitioning in linear solvers and preconditioners. Our efforts included incorporation of data repartitioning capabilities from the Zoltan toolkit into the Trilinos solver framework, (allowing dynamic repartitioning of Trilinos matrices); implementation of efficient distributed data directories and unstructured communication utilities in Zoltan and Trilinos; development of a new multi-constraint geometric partitioning algorithm (which can generate one decomposition that is good with respect to multiple criteria); and research into hypergraph partitioning algorithms (which provide up to 56% reduction of communication volume compared to graph partitioning for a number of emerging applications). This report includes descriptions of the infrastructure and algorithms developed, along with results demonstrating the effectiveness of our approaches.

More Details
17 Results
17 Results