Publications

Results 9301–9400 of 96,771

Search results

Jump to search filters

Full-resolution two-color infrared detector

2021 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2021

Anderson, Evan M.; Campbell, DeAnna M.; Briscoe, Jayson B.; Coon, Wesley T.; Alford, Charles A.; Wood, Michael G.; Klem, John F.; Gamache, Phillip G.; Gunter, Mathew M.; Olesberg, Jonathon T.; Hawkins, Samuel D.; Rohwer, Lauren E.; Stephenson, Chad A.; Peters, D.W.; Goldflam, Michael G.

We discuss thinned InAsSb resonant infrared detectors that are designed to enable high quantum efficiency by using interleaved nanoantennas to read out two wavelengths from each pixel simultaneously.

More Details

LocOO3D User's Manual

Davenport, Kathy D.; Conley, Andrea C.; Downey, Nathan J.; Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael A.

LocOO3D is a software tool that computes geographical locations for seismic events at regional to global scales. This software has a rich set of features, including the ability to use custom 3D velocity models, correlated observations and master event locations. The LocOO3D software is especially useful for research related to seismic monitoring applications, since it allows users to easily explore a variety of location methods and scenarios and is compatible with the CSS3.0 data format used in monitoring applications. The LocOO3D software, User's Manual, and Examples are available on the web at: https://github.com/sandialabs/LocOO3D For additional information on GeoTess, SALSA3D, RSTT, and other related software, please see: https://github.com/sandialabs/GeoTessJava, www.sandia.gov/geotess, www.sandia.gov/salsa3d, and www.sandia.gov/rstt

More Details

Uncoupling Electrokinetic Flow Solutions

Mathematical Geosciences

Kuhlman, Kristopher L.; Malama, Bwalya

The continuum-scale electrokinetic porous-media flow and excess charge redistribution equations are uncoupled using eigenvalue decomposition. The uncoupling results in a pair of independent diffusion equations for “intermediate” potentials subject to modified material properties and boundary conditions. The fluid pressure and electrostatic potential are then found by recombining the solutions to the two intermediate uncoupled problems in a matrix-vector multiplication. Expressions for the material properties or source terms in the intermediate uncoupled problem may require extended precision or careful rewriting to avoid numerical cancellation, but the solutions themselves can typically be computed in double precision. The approach works with analytical or gridded numerical solutions and is illustrated through two examples. The solution for flow to a pumping well is manipulated to predict streaming potential and electroosmosis, and a periodic one-dimensional analytical solution is derived and used to predict electroosmosis and streaming potential in a laboratory flow cell subjected to low frequency alternating current and pressure excitation. The examples illustrate the utility of the eigenvalue decoupling approach, repurposing existing analytical solutions or numerical models and leveraging solutions that are simpler to derive for coupled physics.

More Details

AEVmod – Atomic Environment Vector Module Documentation

Najm, H.N.; Yang, Yoona N.

This report outlines the mathematical formulation for the atomic environment vector (AEV) construction used in the aevmod software package. The AEV provides a summary of the geometry of a molecule or atomic configuration. We also present the formulation for the analytical Jacobian of the AEV with respect to the atomic Cartesian coordinates. The software provides functionality for both the AEV and AEV-Jacobian, as well as the AEV-Hessian which is available via reliance on the third party library Sacado.

More Details
Results 9301–9400 of 96,771
Results 9301–9400 of 96,771