Granular metals (GMs), consisting of metal nanoparticles separated by an insulating matrix, frequently serve as a platform for fundamental electron transport studies. However, few technologically mature devices incorporating GMs have been realized, in large part because intrinsic defects (e.g., electron trapping sites and metal/insulator interfacial defects) frequently impede electron transport, particularly in GMs that do not contain noble metals. Here, we demonstrate that such defects can be minimized in molybdenum-silicon nitride (Mo-SiNx) GMs via optimization of the sputter deposition atmosphere. For Mo-SiNx GMs deposited in a mixed Ar/N2 environment, x-ray photoemission spectroscopy shows a 40%-60% reduction of interfacial Mo-silicide defects compared to Mo-SiNx GMs sputtered in a pure Ar environment. Electron transport measurements confirm the reduced defect density; the dc conductivity improved (decreased) by 104-105 and the activation energy for variable-range hopping increased 10×. Since GMs are disordered materials, the GM nanostructure should, theoretically, support a universal power law (UPL) response; in practice, that response is generally overwhelmed by resistive (defective) transport. Here, the defect-minimized Mo-SiNx GMs display a superlinear UPL response, which we quantify as the ratio of the conductivity at 1 MHz to that at dc, Δ σ ω . Remarkably, these GMs display a Δ σ ω up to 107, a three-orders-of-magnitude improved response than previously reported for GMs. By enabling high-performance electric transport with a non-noble metal GM, this work represents an important step toward both new fundamental UPL research and scalable, mature GM device applications.
Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH3/Er2O3 materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.
We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales. We propose that residual citrate promotes tautomerization of melamine surface functionalities to produce supramolecular shape synthons comprised of melamine-cyanurate adducts capable of forming long-range and highly directional hydrogen-bonding networks. This intrinsic, heterogeneity-driven self-assembly mechanism reflects synergistic combinations of high chemical specificity and long-range cooperativity that may be harnessed to reproducibly fabricate functional structures on arbitrary surfaces.
The development of additively-manufactured (AM) 316L stainless steel (SS) using laser powder bed fusion (LPBF) has enabled near net shape components from a corrosion-resistant structural material. In this article, we present a multiscale study on the effects of processing parameters on the corrosion behavior of as-printed surfaces of AM 316L SS formed via LPBF. Laser power and scan speed of the LPBF process were varied across the instrument range known to produce parts with >99 % density, and the macroscale corrosion trends were interpreted via microscale and nanoscale measurements of porosity, roughness, microstructure, and chemistry. Porosity and roughness data showed that porosity φ decreased as volumetric energy density Ev increased due to a shift in the pore formation mechanism and that roughness Sq was due to melt track morphology and partially fused powder features. Cross-sectional and plan-view maps of chemistry and work function ϕs revealed an amorphous Mn-silicate phase enriched with Cr and Al that varied in both thickness and density depending on Ev. Finally, the macroscale potentiodynamic polarization experiments under full immersion in quiescent 0.6 M NaCl showed significant differences in breakdown potential Eb and metastable pitting. In general, samples with smaller φ and Sq values and larger ϕs values and homogeneity in the Mn-silicate exhibited larger Eb. The porosity and roughness effects stemmed from an increase to the overall number of initiation sites for pitting, and the oxide phase contributed to passive film breakdown by acting as a crevice former or creating a galvanic couple with the SS.
Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. Here, we demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies. We investigated SiNx as an alternative to more commonly used oxide-insulators, as SiNx-based GMs may enable high temperature applications when paired with refractory metals. Comparing Co-SiNx and Mo-SiNx GMs, we found that, in the tunneling-dominated insulating regime, Mo-SiNx had reduced metal-silicide formation and orders-of-magnitude lower conductivity. XPS measurements indicate that metal-silicide and metal-nitride formation are mitigatable concerns in Mo-SiNx. Given the metal-oxide formation seen in other GMs, SiNx is an appealing alternative for metals that readily oxidize. Furthermore, SiNx provides a path to metal-nitride nanostructures, potentially useful for various applications in plasmonics, optics, and sensing.
In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.
Nanothermite NiO-Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, Ea = 49 ± 3 kJ/mole). Multilayers having λ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al (Ea = 30 ± 4 kJ/mole). This solid/liquid dissolution Ea is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.
High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.
Li, Chang; Shyamsunder, Abhinandan; Hoane, Alexis G.; Long, Daniel M.; Kwok, Chun Y.; Kotula, Paul G.; Zavadil, Kevin R.; Gewirth, Andrew A.; Nazar, Linda F.
Aqueous zinc-metal batteries are plagued by poor Zn reversibility owing to zinc dendrite and layered double hydroxide (LDH) formation. Here, we introduce a novel additive—N,N-dimethylformamidium trifluoromethanesulfonate (DOTf)—in a low-cost aqueous electrolyte that can very effectively address these issues. The initial water-assisted dissociation of DOTf into triflic superacid creates a robust nanostructured solid-electrolyte interface (SEI)—revealed by operando spectroscopy and cryomicroscopy—which excludes water and enables dense Zn deposition. We demonstrate excellent Zn plating/stripping in a Zn||Cu asymmetric cell for more than 3,500 cycles. Furthermore, near 100% CE is realized at a combined high current density of 4 mA cm−2 and an areal capacity of 4 mAh cm−2 over long-term cycling. Zn||Zn0.25V2O5·nH2O full cells retain ∼83% of their capacity after 1,000 cycles with mass-limited Zn anodes. By restricting the depth of discharge, the cathodes exhibit less proton intercalation and LDH formation with an extended lifetime of 2,000 cycles.
We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds between φ = 0.4-0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.
We report the formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.
Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.
This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.
Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.
Airborne contaminants from fires containing nuclear waste represent significant health hazards and shape the design and operation of nuclear facilities. Much of the data used to formulate DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,” from the U.S. Department of Energy, were taken over 40 years ago. The objectives of this study were to reproduce experiments from Pacific Northwest Laboratories conducted in June 1973 employing current aerosol measurement methods and instrumentation, develop an enhanced understanding of particulate formation and transport from fires containing nuclear waste, and provide modeling and experimental capabilities for updating current standards and practices in nuclear facilities. A special chamber was designed to conduct small fires containing 25 mL of flammable waste containing lutetium nitrate, ytterbium nitrate, or depleted uranium nitrate. Carbon soot aerosols showed aggregates of primary particles ranging from 20 to 60 nm in diameter. In scanning electron microscopy, ~200-nm spheroidal particles were also observed dispersed among the fractal aggregates. The 200-nm spherical particles were composed of metal phosphates. Airborne release fractions (ARFs) were characterized by leaching filter deposits and quantifying metal concentrations with mass spectrometry. The average mass-based ARF for 238U experiments was 1.0 × 10−3 with a standard deviation of 7.5 × 10−4. For the original experiments, DOE-HDBK-3010-94 states, “Uranium ARFs range from 2 × 10−4 to 3 × 10−3, an uncertainty of approximately an order of magnitude.” Thus, current measurements were consistent with DOE-HDBK-3010-94 values. ARF values for lutetium and ytterbium were approximately one to two orders of magnitude lower than 238U. Metal nitrate solubility may have varied with elemental composition and temperature, thereby affecting ARF values for uranium surrogates (Yb and Lu). In addition to ARF data, solution boiling temperatures and evaporation rates can also be deduced from experimental data.