Publications

7 Results

Search results

Jump to search filters

High-Entropy Metal-Organic Frameworks (HEMOFs): A New Frontier in Materials Design for CO2 Utilization

Advanced Materials

Gallis, Dorina F.S.; Sikma, R.E.; Reyes, Raphael A.; Wygant, Melissa L.; Kotula, Paul G.; Vogel, Dayton J.

High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO2 utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy. Here, a synergistic experimental, analytical, and theoretical approach to design the first high-entropy metal-organic frameworks (HEMOFs) derived from polynuclear metal clusters is implemented, a novel class of porous HEMs that is highly active for CO2 fixation under mild conditions and short reaction times, outperforming existing heterogeneous catalysts. HEMOFs with up to 15 distinct metals are synthesized (the highest number of metals ever incorporated into a single MOF) and, for the first time, homogenous metal mixing within individual clusters is directly observed via high-resolution scanning transmission electron microscopy. Importantly, density functional theory studies provide unprecedented insight into the electronic structures of HEMOFs, demonstrating that the density of states in heterometallic clusters is highly sensitive to metal composition. This work dramatically advances HEMOF materials design, paving the way for further exploration of HEMs and offers new avenues for the development of multifunctional materials with tailored properties for a wide range of applications.

More Details

Interfacial defect reduction enhances universal power law response in Mo-SiNx granular metals

Journal of Applied Physics

Mcgarry, Michael P.; Gilbert, Simeon J.; Yates, Luke; Wygant, Melissa L.; Kotula, Paul G.; Foulk, James W.; Sharma, Peter A.; Flicker, Jack D.; Siegal, Michael P.; Biedermann, Laura B.

Granular metals (GMs), consisting of metal nanoparticles separated by an insulating matrix, frequently serve as a platform for fundamental electron transport studies. However, few technologically mature devices incorporating GMs have been realized, in large part because intrinsic defects (e.g., electron trapping sites and metal/insulator interfacial defects) frequently impede electron transport, particularly in GMs that do not contain noble metals. Here, we demonstrate that such defects can be minimized in molybdenum-silicon nitride (Mo-SiNx) GMs via optimization of the sputter deposition atmosphere. For Mo-SiNx GMs deposited in a mixed Ar/N2 environment, x-ray photoemission spectroscopy shows a 40%-60% reduction of interfacial Mo-silicide defects compared to Mo-SiNx GMs sputtered in a pure Ar environment. Electron transport measurements confirm the reduced defect density; the dc conductivity improved (decreased) by 104-105 and the activation energy for variable-range hopping increased 10×. Since GMs are disordered materials, the GM nanostructure should, theoretically, support a universal power law (UPL) response; in practice, that response is generally overwhelmed by resistive (defective) transport. Here, the defect-minimized Mo-SiNx GMs display a superlinear UPL response, which we quantify as the ratio of the conductivity at 1 MHz to that at dc, Δ σ ω . Remarkably, these GMs display a Δ σ ω up to 107, a three-orders-of-magnitude improved response than previously reported for GMs. By enabling high-performance electric transport with a non-noble metal GM, this work represents an important step toward both new fundamental UPL research and scalable, mature GM device applications.

More Details

Gasb-to-Si Direct Wafer Bonding and Thermal Budget Considerations for Photonic Applications

Martinez, William M.; Anderson, Evan M.; Wood, Michael G.; Friedmann, Thomas A.; Arterburn, Shawn C.; Reyna, Robert; Gutierrez, Jordan E.; Harris, Christian A.; Kotula, Paul G.; Cummings, Damion P.; Bahr, Matthew N.; Patel, Victor J.; Muhowski, Aaron; Hawkins, Samuel D.; Long, Christopher M.; Klem, John F.; Shank, Joshua; Wygant, Melissa L.

Abstract not provided.

7 Results
7 Results