This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the Bryan Mound Strategic Petroleum Reserve site. The grading included consideration of all 47 wells at the Bryan Mound site, with each well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill Strategic Petroleum Reserve Site.
This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the West Hackberry Strategic Petroleum Reserve site. The grading included consideration of all 31 wells at the West Hackberry site, with each well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill and Bryan Mound Strategic Petroleum Reserve Sites.
PANACM 2015 - 1st Pan-American Congress on Computational Mechanics, in conjunction with the 11th Argentine Congress on Computational Mechanics, MECOM 2015
We present a new explicit algorithm for linear elastodynamic problems with material interfaces. The method discretizes the governing equations independently on each material subdomain and then connects them by exchanging forces and masses across the material interface. Variational flux recovery techniques provide the force and mass approximations. The new algorithm has attractive computational properties. It allows different discretizations on each material subdomain and enables partitioned solution of the discretized equations. The method passes a linear patch test and recovers the solution of a monolithic discretization of the governing equations when interface grids match.
Significant inadequacies of current models for multiphase flows present a major barrier to rapid development of advanced high-efficiency low-emissions combustion devices. Liquid spray atomization processes largely determine fuel-air mixture formation, which subsequently govern combustion and controls performance, emissions, and durability of a device. The current study presents a fundamentally-consistent framework to model the effects of breakup processes, liquid drop deformations, and internal flow dynamics on mass, momentum, and energy exchange functions. This framework builds on the Taylor Analogy Breakup (TAB) model which naturally quantifies local drop deformation dynamics. Real-fluid multicomponent thermodynamic property modeling and Gradient Theory simulations facilitate accurate calculations of molecular two-phase interface exchange functions, surface tensions forces, drop oscillations, and breakup processes. The analysis establishes that these drop dynamics, along with finite liquid viscosity effects, significantly alter gas-liquid exchange functions. The study quantifies these effects for the resulting drag coefficients of liquid drops and demonstrates significant deviations from the classic dynamic drag model, which is widely applied in modern simulations performed in academia and industry. This work also quantifies effects, which originate from gas-liquid coupling dynamics, on evaporation and heating rates. The analysis establishes that the consideration of these coupling dynamics modify mass and energy transfer rates even more significantly than the corresponding drag forces from momentum exchange. This physical complexity, however, is largely neglected in modern studies from academia and industry. A new set of equations is presented to improve the modeling of drop breakup processes to address the current shortcomings in the prediction of resulting drops proper- ties over the full range of relevant breakup conditions. The framework is based on a refined energy balance equation which explicitly enforces drop momentum conservation during the breakup process. The introduced modeling framework is entirely derived from conservation equations for mass, momentum, and energy and does not, as a consequence, introduce new modeling constants. The significance of the developed modeling advances to fuel injection processes is demonstrated using Large Eddy Simulation (LES) with a Lagrangian-Eulerian modeling approach.
Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.
Disposal overpacks are proposed as an element of the engineered barrier system for direct disposal of spent nuclear fuel in dual-purpose canisters (DPCs). DPCs are currently licensed for storage and transport, but not disposal. In the DPC disposal system, overpacks would provide long-term containment, and conversely, they would keep groundwater from flooding DPCs. Without flooding, DPCs can never achieve nuclear criticality because they are under-moderated.
This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.
This User Manual provides step-by-step instructions on the Contingency Contractor Optimization Tool's major features. Activities are organized by user role. The Contingency Contractor Optimization project is intended to address former Secretary Gates' mandate in a January 2011 memo and DoDI 3020.41 by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. Based on an electronic storyboard prototype developed in Phase 2, the Contingency Contractor Optimization Tool engineering prototype was refined in Phase 3 of the OSD ATL Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for the selected mission scenarios. The model will optimize the match of personnel groups (military, DoD civilian, and contractors) and capabilities to meet the mission requirements as effectively as possible, based on risk, cost, and other requirements.
This Quick Start Guide is an abbreviated version of the Contingency Contractor Optimization Phase 3, User Manual for the Contingency Contractor Optimization Tool engineering prototype. It focuses on providing quick access instructions to the core activities of the two main user roles: Planning Manager and Analyst. Based on an electronic storyboard prototype developed in Phase 2, the Contingency Contractor Optimization Tool engineering prototype was refined in Phase 3 of the OSD ATL Contingency Contractor Optimization to support strategic planning for contingency contractors. The tool uses a model to optimize the total workforce mix by minimizing the combined total costs for the selected mission scenarios. The model will optimize the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet the mission requirements as effectively as possible, based on risk, cost, and other requirements.
We present a new optimization-based, conservative, and quasi-monotone method for passive tracer transport. The scheme combines high-order spectral element discretization in space with semi-Lagrangian time stepping. Solution of a singly linearly constrained quadratic program with simple bounds enforces conservation and physically motivated solution bounds. The scheme can handle efficiently a large number of passive tracers because the semi-Lagrangian time stepping only needs to evolve the grid points where the primitive variables are stored and allows for larger time steps than a conventional explicit spectral element method. Numerical examples show that the use of optimization to enforce physical properties does not affect significantly the spectral accuracy for smooth solutions. Performance studies reveal the benefits of high-order approximations, including for discontinuous solutions.
The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the design and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.
Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillarybound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.
Wampler, William R.; Brooks, J.N.; Elder, J.D.; Mclean, Adam G.; Rudakov, Dmitry L.; Stangeby, Peter C.
We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 1019 m–3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. The tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.
The mechanical properties, thermal stability, and electrical performance of Au–ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350 °C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. Furthermore, the addition of 1–2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 nΩ-m. Our results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness–resistivity relationship that is relatively independent of the particular ODS chemistry.
Three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen contributes significantly to premixing, particularly in explosive zones in the upstream leeward region, i.e. at the preferred flame stabilization location. Therefore, a small amount of H2 diffuses much faster than CO, creating relatively homogeneous mixture pockets depending on the competition with turbulent mixing. These pockets, together with high H2 reactivity, contribute to stabilizing the flame at a consistent location regardless of the CO concentration in the fuel for the present range of DNS conditions.
Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air is used to identify new sorbents for oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate MOFs has been undertaken. Dispersion-corrected density functional theory (DFT) methods were used to calculate the oxygen and nitrogen binding energies with each of 14 metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Taken together, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen and that the MOF structural type is less important than the metal identity.
This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.
This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.
This paper presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity. Results indicate that At the Reynolds numbers of the simulations (Returb = 600, Re = 8000) choice of molecular diffusion models affects significantly the temperature and concentration fields;Assuming Le = 1 for all species predicts temperatures up to 250 K higher than the physically realistic multi-component model;Faster molecular transport of lighter species changes the local concentration field and affects reaction pathways and chemical kinetics. A possible explanation for these observations is provided in terms of species diffusion velocity that is a strong function of gradients: thus, at sufficiently large Reynolds numbers, gradients and their effects tend to be large. The preliminary conclusion from these simulations seems to indicate molecular diffusion as the third important mechanism active in flames besides convective transport and kinetics. If confirmed by further DNS and measurements, molecular transport in high intensity turbulent flames will have to be realistically modeled to accurately predict emissions (gaseous and particulates) and other combustor performance metrics.
Microfluidics is a technology defined by the engineered precise manipulation of minute amount of liquids through channels with dimensions in the micron scale. Much of microfluidic devices used for biomedical purposes are produced in the form of so called “lab-on-a-chip” format, where multiple steps of conventional biochemical analyses such as staining, washing, and signal collection are miniaturized and integrated into chips fabricated from polymer or glass. Cell-based microfluidic lab-on-achip technology provides some obvious advantages: 1) drastically reduced sample and reagent requirement, and 2) separation and detection with improved sensitivity due to fluid properties at the microscale, i.e. laminar flow. Based on these two advantages, the obvious place where microfluidic cell assays will provide the most benefit is wherescientists must gather much information from precious little sample. Stem cells and other precious cell types such as circulating tumor cells (CTCs), and rare immune subsets are the perfect match for microfluidic multiplex assays. The recent demonstration that multiple cellular changes such as surface receptor activation, protein translocation, long and short RNA, and DNA changes can all be extracted from intact single cells paves the way to systems level understanding of cellular states during development or disease. Finally, with the ability to preserve cell integrity in a microfluidic device during multiplexed analysis, one also preserves the single cell resolution, where information regarding the cell-to-cell heterogeneity during differentiation or response to stimuli is vitally important.