Publications

Results 8601–8650 of 99,299

Search results

Jump to search filters

Energy Redistribution as a Method for Mitigating Risk of Propagating Thermal Runaway

2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022

Mueller, Jacob A.; Preger, Yuliya; Kurzawski, John C.; Rodriguez, Luciano G.; Hewson, John C.

Propagating thermal runaway events are a significant threat to utility-scale storage installations. A propagating thermal runaway event is a cascading series of failures in which energy released from a failed cell triggers subsequent failures in nearby cells. Without intervention, propagation can turn an otherwise manageable single cell failure into a full system conflagration. This study presents a method of mitigating the severity of propagating thermal runaway events in utility-scale storage systems by leveraging the capabilities of a module-interfaced power conversion architecture. The method involves strategic depletion of storage modules to delay or arrest propagation, reducing the total thermal energy released in the failure event. The feasibility of the method is assessed through simulations of propagating thermal runaway events in a 160 kW/80 kWh energy storage system.

More Details

Hyperspectral Signature Analysis and Characterization in Support of Remote Detection of Chemical and Biological Exposures

Proceedings of SPIE - The International Society for Optical Engineering

Katinas, Christopher M.; Timlin, Jerilyn A.; Slater, Jonathon T.; Reichardt, Thomas A.

Remote assessment of physiological parameters has enabled patient diagnostics without the need for a medical professional to become exposed to potential communicable diseases. In particular, early detection of oxygen saturation, abnormal body temperature, heart rate, and/or blood pressure could affect treatment protocols. The modeling effort in this work uses an adding-doubling radiative transfer model of a seven-layer human skin structure to describe absorption and reflection of incident light within each layer. The model was validated using both abiotic and biotic systems to understand light interactions associated with surfaces consisting of complex topography as well as multiple illumination sources. Using literature-based property values for human skin thickness, absorption, and scattering, an average deviation of 7.7% between model prediction and experimental reflectivity was observed in the wavelength range of 500-1000 nm.

More Details

A Forward Analytic Model of Neutron Time-of-Flight Signals for Inferring Ion Temperatures from MagLIF Experiments

Fusion Science and Technology

Weaver, Colin; Cooper, Gary; Perfetti, Christopher; Ampleford, David J.; Chandler, Gordon A.; Knapp, P.F.; Mangan, Michael A.; Styron, Jedediah

A forward analytic model is required to rapidly simulate the neutron time-of-flight (nToF) signals that result from magnetized liner inertial fusion (MagLIF) experiments at Sandia’s Z Pulsed Power Facility. Various experimental parameters, such as the burn-weighted fuel-ion temperature and liner areal density, determine the shape of the nToF signal and are important for characterizing any given MagLIF experiment. Extracting these parameters from measured nToF signals requires an appropriate analytic model that includes the primary deuterium-deuterium neutron peak, once-scattered neutrons in the beryllium liner of the MagLIF target, and direct beamline attenuation. Mathematical expressions for this model were derived from the general-geometry time- and energy-dependent neutron transport equation with anisotropic scattering. Assumptions consistent with the time-of-flight technique were used to simplify this linear Boltzmann transport equation into a more tractable form. Models of the uncollided and once-collided neutron scalar fluxes were developed for one of the five nToF detector locations at the Z-Machine. Numerical results from these models were produced for a representative MagLIF problem and found to be in good agreement with similar neutron transport simulations. Twenty experimental MagLIF data sets were analyzed using the forward models, which were determined to only be significantly sensitive to the ion temperature. The results of this work were also found to agree with values obtained separately using a zero scatter analytic model and a high-fidelity Monte Carlo simulation. Inherent difficulties in this and similar techniques are identified, and a new approach forward is suggested.

More Details

Probabilistic Neural Circuits leveraging AI-Enhanced Codesign for Random Number Generation

Proceedings - 2022 IEEE International Conference on Rebooting Computing, ICRC 2022

Cardwell, Suma G.; Schuman, Catherine D.; Smith, J.D.; Patel, Karan; Kwon, Jaesuk; Liu, Samuel; Allemang, Christopher R.; Misra, Shashank; Incorvia, Jean A.; Aimone, James B.

Stochasticity is ubiquitous in the world around us. However, our predominant computing paradigm is deterministic. Random number generation (RNG) can be a computationally inefficient operation in this system especially for larger workloads. Our work leverages the underlying physics of emerging devices to develop probabilistic neural circuits for RNGs from a given distribution. However, codesign for novel circuits and systems that leverage inherent device stochasticity is a hard problem. This is mostly due to the large design space and complexity of doing so. It requires concurrent input from multiple areas in the design stack from algorithms, architectures, circuits, to devices. In this paper, we present examples of optimal circuits developed leveraging AI-enhanced codesign techniques using constraints from emerging devices and algorithms. Our AI-enhanced codesign approach accelerated design and enabled interactions between experts from different areas of the micro-electronics design stack including theory, algorithms, circuits, and devices. We demonstrate optimal probabilistic neural circuits using magnetic tunnel junction and tunnel diode devices that generate an RNG from a given distribution.

More Details

Femtosecond Coherent Anti-Stokes Raman Spectroscopy in a Cold-Flow Hypersonic Wind Tunnel for Simultaneous Pressure and Temperature Measurements

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Richardson, Daniel; Kearney, Sean P.; Beresh, Steven J.

Measurements of gas-phase pressure and temperature in hypersonic flows are important to understanding fluid–structure interactions on vehicle surfaces, and to develop compressible flow turbulence models. To achieve this measurement capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied at Sandia National Laboratories’ hypersonic wind tunnel. After excitation of rotational Raman transitions by a broadband femtosecond laser pulse, two probe pulses are used: one at an early time where the collisional environment has largely not affected the Raman coherence, and another at a later time after the collisional environment has led to significant J-dependent dephasing of the Raman coherence. CARS spectra from the early probe are fit for temperature, while the later CARS spectra are fit for pressure. Challenges related to implementing fs CARS in cold-flow hypersonic facilities are discussed. Excessive fs pump energy can lead to flow perturbations. The output of a second-harmonic bandwidth compressor (SHBC) is spectrally filtered using a volume Bragg grating to provide the narrowband ps probe pulses and enable single-shot CARS measurements at 1 kHz. Measurements are demonstrated at temperatures and pressures relevant to cold-flow hypersonic wind tunnels in a low-pressure cryostat with an initial demonstration in the hypersonic wind tunnel.

More Details

Estimation of Mechanical Properties of Mancos Shale using Machine Learning Methods

56th U.S. Rock Mechanics/Geomechanics Symposium

Kadeethum, Teeratorn; Yoon, Hongkyu

We propose the use of balanced iterative reducing and clustering using hierarchies (BIRCH) combined with linear regression to predict the reduced Young's modulus and hardness of highly heterogeneous materials from a set of nanoindentation experiments. We first use BIRCH to cluster the dataset according to its mineral compositions, which are derived from the spectral matching of energy-dispersive spectroscopy data through the modular automated processing system (MAPS) platform. We observe that grouping our dataset into five clusters yields the best accuracy as well as a reasonable representation of mineralogy in each cluster. Subsequently, we test four types of regression models, namely linear regression, support vector regression, Gaussian process regression, and extreme gradient boosting regression. The linear regression and Gaussian process regression provide the most accurate prediction, and the proposed framework yields R2 = 0.93 for the test set. Although the study is needed more comprehensively, our results shows that machine learning methods such as linear regression or Gaussian process regression can be used to accurately estimate mechanical properties with a proper number of grouping based on compositional data.

More Details

Evaluating Geologic Disposal Pathways for Advanced Reactor Spent Fuels

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Sassani, David C.; Price, Laura L.; Park, Heeho D.; Matteo, Edward N.; Mariner, Paul

As presented above, because similar existing DOE-managed SNF (DSNF) from previous reactors have been evaluated for disposal pathways, we use this knowledge/experience as a broad reference point for initial technical bases for preliminary dispositioning of potential AR SNF. The strategy for developing fully-formed gap analyses for AR SNF entails the primary step of first obtaining all the defining characteristics of the AR SNF waste stream from the AR developers. Utilizing specific and accurate information/data for developing the potential disposal inventory to be evaluated is a key principle start for success. Once the AR SNF waste streams are defined, the initial assessments would be based on comparison to appropriate existing SNF/waste forms previously analyzed (prior experience) to make a determination on feasibility of direct disposal, or the need to further evaluate due to differences specific to the AR SNF. Assessments of criticality potential and controls would also be performed to assess any R&D gaps to be addressed in that regard as well. Although some AR SNF may need additional treatment for waste form development, these aspects may also be constrained and evaluated within the context of disposal options, including detailed gap analysis to identify further R&D activities to close the gaps.

More Details

Thermal-Hydrological-Mechanical Characterization of the Ghareb Formation at Conditions of High-Level Nuclear Waste Disposal

56th U.S. Rock Mechanics/Geomechanics Symposium

Kibikas, William M.; Bauer, Stephen J.; Choens II, Robert C.; Shalev, E.; Lyakhovsky, V.

The Ghareb Formation in the Yasmin Plain of Israel is under investigation as a potential disposal rock for nuclear waste disposal. Triaxial deformation tests and hydrostatic water-permeability tests were conducted with samples of the Ghareb to assess relevant thermal, hydrological, and mechanical properties. Axial deformation tests were performed on dry and water-saturated samples at effective pressures ranging from 0.7 to 19.6 MPa and temperatures of 23 ℃ and 100 ℃, while permeability tests were conducted at ambient temperatures and effective pressures ranging from 0.7 to 20 MPa. Strength and elastic moduli increase with increasing effective pressure for the triaxial tests. Dry room temperature tests are generally the strongest, while the samples deformed at 100 ℃ exhibit large permanent compaction even at low effective pressures. Water permeability decreases by 1-2 orders of magnitude under hydrostatic conditions while experiencing permanent volume loss of 4-5%. Permeability loss is retained after unloading, resulting from permanent compaction. A 3-D compaction model was used to demonstrate that compaction in one direction is associated with de-compaction in the orthogonal directions. The model accurately reproduces the measured axial and transverse strain components. The experimentally constrained deformational properties of the Ghareb will be used for 3-D thermal-hydrological-mechanical modelling of borehole stability.

More Details

Experiments to Measure the Inversion Point of the Isothermal Reactivity Coefficient in a Water-Moderated Pin-Fueled Critical Assembly at Sandia

Proceedings of the Nuclear Criticality Safety Division Topical Meeting, NCSD 2022 - Embedded with the 2022 ANS Annual Meeting

Harms, Gary A.; Foulk, James W.

A new set of critical experiments exploring the temperature-dependence of the reactivity in a critical assembly is described. In the experiments, the temperature of the critical assembly will be varied to determine the temperature that produces the highest reactivity in the assembly. This temperature is the inversion point of the isothermal reactivity coefficient of the assembly. An analysis of relevant configurations is presented. Existing measurements are described and an analysis of these experiments presented. The overall experimental approach is described as are the modifications to the critical assembly needed to perform the experiments.

More Details

Risk-Averse Investment Optimization for Power System Resilience to Winter Storms

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Garcia, Manuel J.; Austgen, Brent; Pierre, Brian J.; Hasenbein, John; Kutanoglu, Erhan

We propose a two-stage scenario-based stochastic optimization problem to determine investments that enhance power system resilience. The proposed optimization problem minimizes the Conditional Value at Risk (CVaR) of load loss to target low-probability high-impact events. We provide results in the context of generator winterization investments in Texas using winter storm scenarios generated from historical data collected from Winter Storm Uri. Results illustrate how the CVaR metric can be used to minimize the tail of the distribution of load loss and illustrate how risk-Aversity impacts investment decisions.

More Details

Substation-level Circuit Topology Estimation Using Machine Learning

2022 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2022

Garcia, Daniel R.; Poudel, Binod; Bidram, Ali; Reno, Matthew J.

Modern distribution systems can accommodate different topologies through controllable tie lines for increasing the reliability of the system. Estimating the prevailing circuit topology or configuration is of particular importance at the substation for different applications to properly operate and control the distribution system. One of the applications of circuit configuration estimation is adaptive protection. An adaptive protection system relies on the communication system infrastructure to identify the latest status of power. However, when the communication links to some of the equipment are outaged, the adaptive protection system may lose its awareness over the status of the system. Therefore, it is necessary to estimate the circuit status using the available healthy communicated data. This paper proposes the use of machine learning algorithms at the substation to estimate circuit configuration when the communication to the tie breakers is compromised. Doing so, the adaptive protection system can identify the correct protection settings corresponding to the estimated circuit topology. The effectiveness of the proposed approach is verified on IEEE 123 bus test system.

More Details

Algorithmic Input Generation for More Effective Software Testing

Proceedings - 2022 IEEE 46th Annual Computers, Software, and Applications Conference, COMPSAC 2022

Epifanovskaya, Laura; Meeson, Reginald; Mccormack, Christopher; Lee, Jinseo R.; Armstrong, Robert C.; Mayo, Jackson R.

It is impossible in practice to comprehensively test even small software programs due to the vastness of the reachable state space; however, modern cyber-physical systems such as aircraft require a high degree of confidence in software safety and reliability. Here we explore methods of generating test sets to effectively and efficiently explore the state space for a module based on the Traffic Collision Avoidance System (TCAS) used on commercial aircraft. A formal model of TCAS in the model-checking language NuSMV provides an output oracle. We compare test sets generated using various methods, including covering arrays, random, and a low-complexity input paradigm applied to 28 versions of the TCAS C program containing seeded errors. Faults are triggered by tests for all 28 programs using a combination of covering arrays and random input generation. Complexity-based inputs perform more efficiently than covering arrays, and can be paired with random input generation to create efficient and effective test sets. A random forest classifier identifies variable values that can be targeted to generate tests even more efficiently in future work, by combining a machine-learned fuzzing algorithm with more complex model oracles developed in model-based systems engineering (MBSE) software.

More Details

INVESTIGATION ON THE EFFECTS OF PASSIVE PRE-CHAMBER IGNITION SYSTEM AND GEOMETRY ON ENGINE KNOCK INTENSITY

Proceedings of ASME 2022 ICE Forward Conference, ICEF 2022

Di Sabatino, Francesco; Martinez-Hernandiz, Pablo; Rosa, Ricardo N.; Ekoto, Isaac W.

The effects of passive pre-chamber (PC) geometry and nozzle pattern as well as the use of either conventional spark or non-equilibrium plasma PC ignition system on knocking events were studied in an optically-accessible single-cylinder gasoline research engine. The equivalence ratio of the charge in the main chamber (MC) was maintained equal to 0.94 at a constant engine speed of 1300 rpm, and at constant engine load of 3.5 bar indicated mean effective pressure for all operating conditions. MC pressure profiles were collected and analyzed to infer the amplitude and the frequency of pressure oscillations that resulted in knocking events. The combustion process in the MC was investigated utilizing high-speed excited methylidyne radical (CH*) chemiluminescence images. The collected results highlighted that PC volume and nozzle pattern substantially affected the knock intensity (KI), while the use of the non-equilibrium plasma ignition system exhibited lower KI compared to PC equipped with a conventional inductive ignition system. It was also identified that knocking events were likely not generated by conventional end gas auto-ignition, but by jet-related phenomena, as well as jet-flame wall quenching. The relation between these phenomena and PC geometry, nozzle pattern, as well as ignition system has been also highlighted and discussed.

More Details

Logical and Physical Reversibility of Conservative Skyrmion Logic

IEEE Magnetics Letters

Hu, Xuan; Walker, Benjamin W.; Garcia-Sanchez, Felipe; Edwards, Alexander J.; Zhou, Peng; Incorvia, Jean A.C.; Paler, Alexandru; Frank, Michael P.; Friedman, Joseph S.

Magnetic skyrmions are nanoscale whirls of magnetism that can be propagated with electrical currents. The repulsion between skyrmions inspires their use for reversible computing based on the elastic billiard ball collisions proposed for conservative logic in 1982. In this letter, we evaluate the logical and physical reversibility of this skyrmion logic paradigm, as well as the limitations that must be addressed before dissipation-free computation can be realized.

More Details

Utilizing Reinforcement Learning to Continuously Improve a Primitive-Based Motion Planner

Journal of Aerospace Information Systems

Goddard, Zachary C.; Wardlaw, Kenneth; Williams, Kyle; Parish, Julie M.; Mazumdar, Anirban

This paper describes how the performance of motion primitive-based planning algorithms can be improved using reinforcement learning. Specifically, we describe and evaluate a framework that autonomously improves the performance of a primitive-based motion planner. The improvement process consists of three phases: exploration, extraction, and reward updates. This process can be iterated continuously to provide successive improvement. The exploration step generates new trajectories, and the extraction step identifies new primitives from these trajectories. These primitives are then used to update rewards for continued exploration. This framework required novel shaping rewards, development of a primitive extraction algorithm, and modification of the Hybrid A* algorithm. The framework is tested on a navigation task using a nonlinear F-16 model. The framework autonomously added 91 motion primitives to the primitive library and reduced average path cost by 21.6 s, or 35.75% of the original cost. The learned primitives are applied to an obstacle field navigation task, which was not used in training, and reduced path cost by 16.3 s, or 24.1%. Additionally, two heuristics for the modified Hybrid A* algorithm are designed to improve effective branching factor.

More Details

A Simulation-Oblivious Data Transport Model for Flexible In Transit Visualization

Mathematics and Visualization

Usher, Will; Park, Hyungman; Lee, Myoungkyu; Navratil, Paul; Fussell, Donald; Pascucci, Valerio

In transit visualization offers a desirable approach to performing in situ visualization by decoupling the simulation and visualization components. This decoupling requires that the data be transferred from the simulation to the visualization, which is typically done using some form of aggregation and redistribution. As the data distribution is adjusted to match the visualization’s parallelism during redistribution, the data transport layer must have knowledge of the input data structures to partition or merge them. In this chapter, we will discuss an alternative approach suitable for quickly integrating in transit visualization into simulations without incurring significant overhead or aggregation cost. Our approach adopts an abstract view of the input simulation data and works only on regions of space owned by the simulation ranks, which are sent to visualization clients on demand.

More Details

Visualizing the Inter-Area Modes of the Western Interconnection

IEEE Power and Energy Society General Meeting

Elliott, Ryan T.; Schoenwald, David A.

This paper presents a visualization technique for incorporating eigenvector estimates with geospatial data to create inter-area mode shape maps. For each point of measurement, the method specifies the radius, color, and angular orientation of a circular map marker. These characteristics are determined by the elements of the right eigenvector corresponding to the mode of interest. The markers are then overlaid on a map of the system to create a physically intuitive visualization of the mode shape. This technique serves as a valuable tool for differentiating oscillatory modes that have similar frequencies but different shapes. This work was conducted within the Western Interconnection Modes Review Group (WIMRG) in the Western Electric Coordinating Council (WECC). For testing, we employ the WECC 2021 Heavy Summer base case, which features a high-fidelity, industry standard dynamic model of the North American Western Interconnection. Mode estimates are produced via eigen-decomposition of a reduced-order state matrix identified from simulated ringdown data. The results provide improved physical intuition about the spatial characteristics of the inter-area modes. In addition to offline applications, this visualization technique could also enhance situational awareness for system operators when paired with online mode shape estimates.

More Details

Reverse-mode differentiation in arbitrary tensor network format: with application to supervised learning

Journal of Machine Learning Research

Safta, Cosmin; Jakeman, John D.; Gorodetsky, Alex A.

This paper describes an efficient reverse-mode differentiation algorithm for contraction operations for arbitrary and unconventional tensor network topologies. The approach leverages the tensor contraction tree of Evenbly and Pfeifer (2014), which provides an instruction set for the contraction sequence of a network. We show that this tree can be efficiently leveraged for differentiation of a full tensor network contraction using a recursive scheme that exploits (1) the bilinear property of contraction and (2) the property that trees have a single path from root to leaves. While differentiation of tensor-tensor contraction is already possible in most automatic differentiation packages, we show that exploiting these two additional properties in the specific context of contraction sequences can improve eficiency. Following a description of the algorithm and computational complexity analysis, we investigate its utility for gradient-based supervised learning for low-rank function recovery and for fitting real-world unstructured datasets. We demonstrate improved performance over alternating least-squares optimization approaches and the capability to handle heterogeneous and arbitrary tensor network formats. When compared to alternating minimization algorithms, we find that the gradient-based approach requires a smaller oversampling ratio (number of samples compared to number model parameters) for recovery. This increased efficiency extends to fitting unstructured data of varying dimensionality and when employing a variety of tensor network formats. Here, we show improved learning using the hierarchical Tucker method over the tensor-train in high-dimensional settings on a number of benchmark problems.

More Details

Measuring Reproduciblity of Machine Learning Methods for Medical Diagnosis

Proceedings - 2022 4th International Conference on Transdisciplinary AI, TransAI 2022

Ahmed, Hana; Tchoua, Roselyne; Lofstead, Gerald F.

The National Academy of Sciences, Engineering, and Medicine (NASEM) defines reproducibility as 'obtaining consistent computational results using the same input data, computational steps, methods, code, and conditions of analysis,' and replicability as 'obtaining consistent results across studies aimed at answering the same scientific question, each of which has obtained its own data' [1]. Due to an increasing number of applications of artificial intelligence and machine learning (AI/ML) to fields such as healthcare and digital medicine, there is a growing need for verifiable AI/ML results, and therefore reproducible research and replicable experiments. This paper establishes examples of irreproducible AI/ML applications to medical sciences and quantifies the variance of common AI/ML models (Artificial Neural Network, Naive Bayes classifier, and Random Forest classifiers) for tasks on medical data sets.

More Details

Sequential optical response suppression for chemical mixture characterization

Quantum

Magann, Alicia B.; Mccaul, Gerard; Rabitz, Herschel A.; Bondar, Denys I.

The characterization of mixtures of non-interacting, spectroscopically similar quantum components has important applications in chemistry, biology, and materials science. We introduce an approach based on quantum tracking control that allows for determining the relative concentrations of constituents in a quantum mixture, using a single pulse which enhances the distinguishability of components of the mixture and has a length that scales linearly with the number of mixture constituents. To illustrate the method, we consider two very distinct model systems: mixtures of diatomic molecules in the gas phase, as well as solid-state materials composed of a mixture of components. A set of numerical analyses are presented, showing strong performance in both settings.

More Details

Self-correcting Flip-flops for Triple Modular Redundant Logic in a 12-nm Technology

Proceedings - IEEE International Symposium on Circuits and Systems

Clark, Lawrence T.; Duvnjak, Alen; Young-Sciortino, Clifford; Cannon, Matthew J.; Brunhaver, John; Agarwal, Sapan; Wilson, Donald E.; Barnaby, Hugh; Marinella, Matthew

Area efficient self-correcting flip-flops for use with triple modular redundant (TMR) soft-error hardened logic are implemented in a 12-nm finFET process technology. The TMR flip-flop slave latches self-correct in the clock low phase using Muller C-elements in the latch feedback. These C-elements are driven by the two redundant stored values and not by the slave latch itself, saving area over a similar implementation using majority gate feedback. These flip-flops are implemented as large shift-register arrays on a test chip and have been experimentally tested for their soft-error mitigation in static and dynamic modes of operation using heavy ions and protons. We show how high clock skew can result in susceptibility to soft-errors in the dynamic mode, and explain the potential failure mechanism.

More Details

Spectral Equivalence Properties of Higher-Order Tensor Product Finite Elements

Lecture Notes in Computational Science and Engineering

Dohrmann, Clark R.

The focus of this study is on spectral equivalence results for higher-order tensor product finite elements in the H(curl), H(div), and L2 function spaces. For certain choices of the higher-order shape functions, the resulting mass and stiffness matrices are spectrally equivalent to those for an assembly of lowest-order edge-, face- or interior-based elements on the associated Gauss–Lobatto–Legendre (GLL) mesh.

More Details

Using Modal Projection Error to Evaluate: SEREP Modal Expansion

Conference Proceedings of the Society for Experimental Mechanics Series

Schoenherr, Tyler F.; Foulk, James W.

Expansion techniques are powerful tools that can take a limited measurement set and provide information on responses at unmeasured locations. Expansion techniques are used in dynamic environments specifications, full field stress measurements, model calibration, and other calculations that require response at locations not measured. However, the process of modal expansion techniques such as SEREP (System Equivalent Reduction Expansion Process) has error with the projection of the measurement set of degrees of freedom to the expanded degrees of freedom. Empirical evidence has been used in the past to qualitatively determine the error. In recent years, the modal projection error was developed to quantify the error through a projection between different domains. The modal projection error is used in this paper to demonstrate the use of the metric in quantifying the error of the expansion process and to quantify which modes of the expansion process are the most important.

More Details

Performance Loss Rate Estimation of Fielded Photovoltaic Systems Based on Statistical Change-Point Techniques

SyNERGY MED 2022 - 2nd International Conference on Energy Transition in the Mediterranean Area, Proceedings

Livera, Andreas; Tziolis, Georgios; Theristis, Marios; Stein, Joshua; Georghiou, George E.

The precise estimation of performance loss rate (PLR) of photovoltaic (PV) systems is vital for reducing investment risks and increasing the bankability of the technology. Until recently, the PLR of fielded PV systems was mainly estimated through the extraction of a linear trend from a time series of performance indicators. However, operating PV systems exhibit failures and performance losses that cause variability in the performance and may bias the PLR results obtained from linear trend techniques. Change-point (CP) methods were thus introduced to identify nonlinear trend changes and behaviour. The aim of this work is to perform a comparative analysis among different CP techniques for estimating the annual PLR of eleven grid-connected PV systems installed in Cyprus. Outdoor field measurements over an 8-year period (June 2006-June 2014) were used for the analysis. The obtained results when applying different CP algorithms to the performance ratio time series (aggregated into monthly blocks) demonstrated that the extracted trend may not always be linear but sometimes can exhibit nonlinearities. The application of different CP methods resulted to PLR values that differ by up to 0.85% per year (for the same number of CPs/segments).

More Details

Multiple Inverter Microgrid Experimental Fault Testing

Conference Record of the IEEE Photovoltaic Specialists Conference

Gurule, Nicholas S.; Hernandez-Alvidrez, Javier; Reno, Matthew J.; Flicker, Jack D.

For the resiliency of both small and large distribution systems, the concept of microgrids is arising. The ability for sections of the distribution system to be 'self-sufficient' and operate under their own energy generation is a desirable concept. This would allow for only small sections of the system to be without power after being affected by abnormal events such as a fault or a natural disaster, and allow for a greater number of consumers to go through their lives as normal. Research is needed to determine how different forms of generation will perform in a microgrid, as well as how to properly protect an islanded system. While synchronous generators are well understood and generally accepted amongst utility operators, inverter-based resources (IBRs) are less common. An IBR's fault characteristic varies between manufacturers and is heavily based on the internal control scheme. Additionally, with the internal protections of these devices to not damage the switching components, IBRs are usually limited to only 1.1-2.5p.u. of the rated current, depending on the technology. This results in traditional protection methods such as overcurrent devices being unable to 'trip' in a microgrid with high IBR penetration. Moreover, grid-following inverters (commonly used for photovoltaic systems) require a voltage source to synchronize with before operating. Also, these inverters do not provide any inertia to a system. On the other hand, grid-forming inverters can operate as a primary voltage source, and provide an 'emulated inertia' to the system. This study will look at a small islanded system with a grid-forming inverter, and a grid-following inverter subjected to a line-to-ground fault.

More Details

Analyzing Field Data from the Brine Availability Test in Salt (BATS): A High-resolution 3D Numerical Comparison between Voronoi and Cartesian Meshing

Proceedings of the International High-Level Radioactive Waste Management Conference, IHLRWM 2022, Embedded with the 2022 ANS Winter Meeting

Jayne, Richard; Kuhlman, Kristopher L.

A crucial component of field testing is the utilization of numerical models to better understand the system and the experimental data being collected. Meshing and modeling field tests is a complex and computationally demanding problem. Hexahedral elements cannot always reproduce experimental dimensions leading to grid orientation or geometric errors. Voronoi meshes can match complex geometries without sacrificing orthogonality. As a result, here we present a high-resolution 3D numerical study for the BATS heater test at the WIPP that compares both a standard non-deformed cartesian mesh along with a Voronoi mesh to match field data collected during a salt heater experiment.

More Details

Verification of Neural Network Surrogates

Computer Aided Chemical Engineering

Haddad, Joshua; Bynum, Michael L.; Eydenberg, Michael S.; Blakely, Logan; Kilwein, Zachary; Boukouvala, Fani; Laird, Carl D.; Jalving, Jordan

Neural networks (NN)s have been increasingly proposed as surrogates for approximation of systems with computationally expensive physics for rapid online evaluation or exploration. As these surrogate models are integrated into larger optimization problems used for decision making, there is a need to verify their behavior to ensure adequate performance over the desired parameter space. We extend the ideas of optimization-based neural network verification to provide guarantees of surrogate performance over the feasible optimization space. In doing so, we present formulations to represent neural networks within decision-making problems, and we develop verification approaches that use model constraints to provide increasingly tight error estimates. We demonstrate the capabilities on a simple steady-state reactor design problem.

More Details

Dotted-line FLEET for two-component velocimetry

Optics Letters

Zhang, Yibin; Richardson, Daniel; Marshall, G.J.; Beresh, Steven J.; Casper, Katya M.

Femtosecond laser electronic excitation tagging (FLEET) is a powerful unseeded velocimetry technique typically used to measure one component of velocity along a line, or two or three components from a dot. In this Letter, we demonstrate a dotted-line FLEET technique which combines the dense profile capability of a line with the ability to perform two-component velocimetry with a single camera on a dot. Our set-up uses a single beam path to create multiple simultaneous spots, more than previously achieved in other FLEET spot configurations. We perform dotted-line FLEET measurements downstream of a highly turbulent, supersonic nitrogen free jet. Dotted-line FLEET is created by focusing light transmitted by a periodic mask with rectangular slits of 1.6 × 40 mm2 and an edge-to-edge spacing of 0.5 mm, then focusing the imaged light at the measurement region. Up to seven symmetric dots spaced approximately 0.9 mm apart, with mean full-width at half maximum diameters between 150 and 350 µm, are simultaneously imaged. Both streamwise and radial velocities are computed and presented in this Letter.

More Details

Experimental Dynamic Substructures

Handbook of Experimental Structural Dynamics: With 667 Figures and 70 Tables

Mayes, Randall L.; Allen, Matthew S.

This chapter deals with experimental dynamic substructures which are reduced order models that can be coupled with each other or with finite element derived substructures to estimate the system response of the coupled substructures. A unifying theoretical framework in the physical, modal or frequency domain is reviewed with examples. The major issues that have hindered experimental based substructures are addressed. An example is demonstrated with the transmission simulator method that overcomes the major historical difficulties. Guidelines for the transmission simulator design are presented.

More Details

Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability

Proceedings - 2022 IEEE International Symposium on Software Reliability Engineering Workshops, ISSREW 2022

Willenbring, James M.; Walia, Gursimran S.

Software sustainability is critical for Computational Science and Engineering (CSE) software. Measuring sustainability is challenging because sustainability consists of many attributes. One factor that impacts software sustainability is the complexity of the source code. This paper introduces an approach for utilizing complexity data, with a focus on hotspots of and changes in complexity, to assist developers in performing code reviews and inform project teams about longer-term changes in sustainability and maintainability from the perspective of cyclomatic complexity. We present an analysis of data associated with four real-world pull requests to demonstrate how the metrics may help guide and inform the code review process and how the data can be used to measure changes in complexity over time.

More Details

A 0.2-2 GHz Time-Interleaved Multi-Stage Switched-Capacitor Delay Element Achieving 448.6 ns Delay and 330 ns/mm2Area Efficiency

Digest of Papers IEEE Radio Frequency Integrated Circuits Symposium

Forbes, Travis; Magstadt, Benjamin T.; Moody, Jesse; Suchanek, Andrew; Nelson, Spencer J.

A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with < 0.12% delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.

More Details

Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis

Combustion Theory and Modelling

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo; Safta, Cosmin; Zador, Judit; Najm, Habib N.

We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.

More Details

An Optical Flow Approach to Tracking Ship Track Behavior Using GOES-R Satellite Imagery

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Shand, Lyndsay; Foulk, James W.; Roesler, Erika L.; Lyons, Don; Gray, Skyler D.

Ship emissions can form linear cloud structures, or ship tracks, when atmospheric water vapor condenses on aerosols in the ship exhaust. These structures are of interest because they are observable and traceable examples of MCB, a mechanism that has been studied as a potential approach for solar climate intervention. Ship tracks can be observed throughout the diurnal cycle via space-borne assets like the advanced baseline imagers on the national oceanic and atmospheric administration geostationary operational environmental satellites, the GOES-R series. Due to complex atmospheric dynamics, it can be difficult to track these aerosol perturbations over space and time to precisely characterize how long a single emission source can significantly contribute to indirect radiative forcing. We propose an optical flow approach to estimate the trajectories of ship-emitted aerosols after they begin mixing with low boundary layer clouds using GOES-17 satellite imagery. Most optical flow estimation methods have only been used to estimate large scale atmospheric motion. We demonstrate the ability of our approach to precisely isolate the movement of ship tracks in low-lying clouds from the movement of large swaths of high clouds that often dominate the scene. This efficient approach shows that ship tracks persist as visible, linear features beyond 9 h and sometimes longer than 24 h.

More Details

Optical characterization of the Sandia fog facility for computational sensing

Optics InfoBase Conference Papers

Bentz, Brian Z.; Pattyn, Christian A.; Redman, Brian J.; Foulk, James W.; Deneke, Elihu; Sanchez, Andres L.; Westlake, Karl; Foulk, James W.; Wright, Jeremy B.

We present optical metrology at the Sandia fog chamber facility. Repeatable and well characterized fogs are generated under different atmospheric conditions and applied for light transport model validation and computational sensing development.

More Details

A Numerical and Experimental Investigation on Different Strategies to Evaluate Heat Release Rate and Performance of a Passive Pre-Chamber Ignition System

SAE Technical Papers

Martinez-Hernandiz, Pablo J.; Di Sabatino, Francesco; Novella, Ricardo; Ekoto, Isaac W.

Pre-chamber ignition has demonstrated capability to increase internal combustion engine in-cylinder burn rates and enable the use of low engine-out pollutant emission combustion strategies. In the present study, newly designed passive pre-chambers with different nozzle-hole patterns - that featured combinations of radial and axial nozzles - were experimentally investigated in an optically accessible, single-cylinder research engine. The pre-chambers analyzed had a narrow throat geometry to increase the velocity of the ejected jets. In addition to a conventional inductive spark igniter, a nanosecond spark ignition system that promotes faster early burn rates was also investigated. Time-resolved visualization of ignition and combustion processes was accomplished through high-speed hydroxyl radical (OH*) chemiluminescence imaging. Pressure was measured during the engine cycle in both the main chamber and pre-chamber to monitor respective combustion progress. Experimental heat release rates (HRR) calculated from the measured pressure profiles were used as inputs for two different GT-Power 1D simulations to evaluate the pre-chamber jet-exit momentum and penetration distance. The first simulation used both the calculated main-chamber and pre-chamber HRR, while the second used only the main chamber HRR with the pre-chamber HRR modeled. Results show discrepancies between the models mainly in the pressurization of the pre-chamber which in turn affected jet penetration rate and highlights the sensitivity of the simulation results to proper input selection. Experimental results further show increased pressurization, with an associated acceleration of jet penetration, when operating with nanosecond spark ignition systems regardless of the pre-chamber tip geometry used.

More Details

Reverse Breakdown Time of Wide Bandgap Diodes

2022 IEEE 9th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2022

Flicker, Jack D.; Schrock, Emily A.; Kaplar, Robert

In order to evaluate the time evolution of avalanche breakdown in wide and ultra-wide bandgap devices, we have developed a cable pulser experimental setup that can evaluate the time-evolution of the terminating impedance for a semiconductor device with a time resolution of 130 ps. We have utilized this pulser setup to evaluate the time-to-breakdown of vertical Gallium Nitride and Silicon Carbide diodes for possible use as protection elements in the electrical grid against fast transient voltage pulses (such as those induced by an electromagnetic pulse event). We have found that the Gallium Nitride device demonstrated faster dynamics compared to the Silicon Carbide device, achieving 90% conduction within 1.37 ns compared to the SiC device response time of 2.98 ns. While the Gallium Nitride device did not demonstrate significant dependence of breakdown time with applied voltage, the Silicon Carbide device breakdown time was strongly dependent on applied voltage, ranging from a value of 2.97 ns at 1.33 kV to 0.78 ns at 2.6 kV. The fast response time (< 5 ns) of both the Gallium Nitride and Silicon Carbide devices indicate that both materials systems could meet the stringent response time requirements and may be appropriate for implementation as protection elements against electromagnetic pulse transients.

More Details

Half-Precision Scalar Support in Kokkos and Kokkos Kernels: An Engineering Study and Experience Report

Proceedings - 2022 IEEE 18th International Conference on e-Science, eScience 2022

Harvey, Evan C.; Milewicz, Reed M.; Trott, Christian R.; Berger-Vergiat, Luc; Rajamanickam, Sivasankaran

To keep pace with the demand for innovation through scientific computing, modern scientific software development is increasingly reliant upon a rich and diverse ecosystem of software libraries and toolchains. Research software engineers (RSEs) responsible for that infrastructure perform highly integrative work, acting as a bridge between the hardware, the needs of researchers, and the software layers situated between them; relatively little, however, has been written about the role played by RSEs in that work and what support they need to thrive. To that end, we present a two-part report on the development of half-precision floating point support in the Kokkos Ecosystem. Half-precision computation is a promising strategy for increasing performance in numerical computing and is particularly attractive for emerging application areas (e.g., machine learning), but developing practicable, portable, and user-friendly abstractions is a nontrivial task. In the first half of the paper, we conduct an engineering study on the technical implementation of the Kokkos half-precision scalar feature and showcase experimental results; in the second half, we offer an experience report on the challenges and lessons learned during feature development by the first author. We hope our study provides a holistic view on scientific library development and surfaces opportunities for future studies into effective strategies for RSEs engaged in such work.

More Details

Demonstration of a Burst-Mode-Pumped Noncolinear Optical Parametric Oscillator (NOPO) for Broadband CARS Diagnostics in Gases

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Jans, Elijah R.; Kearney, Sean P.; Armstrong, Darrell J.; Smith, Arlee V.

Demonstration of broadband nanosecond output from a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at 40 kHz. The NOPO is pumped by 355-nm output at 50 mJ/pulse for 45 pulses. A bandwidth of 540 cm-1 was achieved from the OPO with a conversion efficiency of 10% for 5 mJ/pulse. Higher bandwidths up to 750 cm-1 were readily achievable at reduced performance and beam quality. The broadband NOPO output was used for a planar BOXCARS phase matching scheme for N2 CARS measurements in a near adiabatic H2/air flame. Single-shot CARS measurements were taken for equivalence ratios of φ=0.52-0.86 for temperatures up to 2200 K.

More Details

Resilient adjudication in non-intrusive inspection with hierarchical object and anomaly detection

Proceedings of SPIE - The International Society for Optical Engineering

Krofcheck, Daniel J.; John, Esther W.L.; Galloway, Hugh; Sorensen, Asael H.; Jameson, Carter D.; Aubry, Connor; Prasadan, Arvind; Galasso, Jennifer; Goodman, Eric; Forrest, Robert

Large scale non-intrusive inspection (NII) of commercial vehicles is being adopted in the U.S. at a pace and scale that will result in a commensurate growth in adjudication burdens at land ports of entry. The use of computer vision and machine learning models to augment human operator capabilities is critical in this sector to ensure the flow of commerce and to maintain efficient and reliable security operations. The development of models for this scale and speed requires novel approaches to object detection and novel adjudication pipelines. Here we propose a notional combination of existing object detection tools using a novel ensembling framework to demonstrate the potential for hierarchical and recursive operations. Further, we explore the combination of object detection with image similarity as an adjacent capability to provide post-hoc oversight to the detection framework. The experiments described herein, while notional and intended for illustrative purposes, demonstrate that the judicious combination of diverse algorithms can result in a resilient workflow for the NII environment.

More Details

Development and Validation of a Wind Turbine Generator Simulation Model

2022 North American Power Symposium, NAPS 2022

North Piegan, Gordon E.; Darbali-Zamora, Rachid; Berg, Jonathan C.

This paper presents a type-IV wind turbine generator (WTG) model developed in MATLAB/Simulink. An aerodynamic model is used to improve an electromagnetic transient model. This model is further developed by incorporating a single-mass model of the turbine and including generator torque control from an aerodynamic model. The model is validated using field data collected from an actual WTG located in the Scaled Wind Farm Technology (SWiFT) facility. The model takes the nacelle wind speed as an estimate. To ensure the model and the SWiFT WTG field data is compared accurately, the wind speed is estimated using a Kalman filter. Simulation results shows that using a single-mass model instead of a two-mass model for aerodynamic torque, including the generator torque control from SWiFT, estimating wind speed via the Kalman filter and tunning the synchronous generator, accurately represent the generator torque, speed, and power, compared to the SWiFT WTG field data.

More Details

Winter Storm Scenario Generation for Power Grids Based on Historical Generator Outages

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Austgen, Brent; Garcia, Manuel J.; Pierre, Brian J.; Hasenbein, John; Kutanoglu, Erhan

We present a procedure for randomly generating realistic steady-state contingency scenarios based on the historical outage data from a particular event. First, we divide generation into classes and fit a probability distribution of outage magnitude for each class. Second, we provide a method for randomly synthesizing generator resilience levels in a way that preserves the data-driven probability distributions of outage magnitude. Finally, we devise a simple method of scaling the storm effects based on a single global parameter. We apply our methods using data from historical Winter Storm Uri to simulate contingency events for the ACTIVSg2000 synthetic grid on the footprint of Texas.

More Details

Integrating process, control-flow, and data resiliency layers using a hybrid Fenix/Kokkos approach

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Whitlock, Matthew J.; Foulk, James W.; Bosilca, George; Bouteiller, Aurelien; Nicolae, Bogdan; Teranishi, Keita; Giem, Elisabeth; Sarkar, Vivek

Integrating recent advancements in resilient algorithms and techniques into existing codes is a singular challenge in fault tolerance - in part due to the underlying complexity of implementing resilience in the first place, but also due to the difficulty introduced when integrating the functionality of a standalone new strategy with the preexisting resilience layers of an application. We propose that the answer is not to build integrated solutions for users, but runtimes designed to integrate into a larger comprehensive resilience system and thereby enable the necessary jump to multi-layered recovery. Our work designs, implements, and verifies one such comprehensive system of runtimes. Utilizing Fenix, a process resilience tool with integration into preexisting resilience systems as a design priority, we update Kokkos Resilience and the use pattern of VeloC to support application-level integration of resilience runtimes. Our work shows that designing integrable systems rather than integrated systems allows for user-designed optimization and upgrading of resilience techniques while maintaining the simplicity and performance of all-in-one resilience solutions. More application-specific choice in resilience strategies allows for better long-term flexibility, performance, and - importantly - simplicity.

More Details

PROBABILISTIC MODELING OF CLIMATE CHANGE IMPACTS ON RENEWABLE ENERGY AND STORAGE REQUIREMENTS FOR NM'S ENERGY TRANSITION ACT

Proceedings of ASME 2022 16th International Conference on Energy Sustainability, ES 2022

Ho, Clifford K.; Roesler, Erika L.; Nguyen, Tu A.; Ellison, James

This paper provides a study of the potential impacts of climate change on intermittent renewable energy resources, battery storage, and resource adequacy in Public Service Company of New Mexico's Integrated Resource Plan for 2020 - 2040. Climate change models and available data were first evaluated to determine uncertainty and potential changes in solar irradiance, temperature, and wind speed in NM in the coming decades. These changes were then implemented in solar and wind energy models to determine impacts on renewable energy resources in NM. Results for the extreme climate-change scenario show that the projected wind power may decrease by ~13% due to projected decreases in wind speed. Projected solar power may decrease by ~4% due to decreases in irradiance and increases in temperature in NM. Uncertainty in these climateinduced changes in wind and solar resources was accommodated in probabilistic models assuming uniform distributions in the annual reductions in solar and wind resources. Uncertainty in battery storage performance was also evaluated based on increased temperature, capacity fade, and degradation in roundtrip efficiency. The hourly energy balance was determined throughout the year given uncertainties in the renewable energy resources and energy storage. The loss of load expectation (LOLE) was evaluated for the 2040 No New Combustion portfolio and found to increase from 0 days/year to a median value of ~2 days/year due to potential reductions in renewable energy resources and battery storage performance and capacity. A rank-regression analyses revealed that battery round-trip efficiency was the most significant parameter that impacted LOLE, followed by solar resource, wind resource, and battery fade. An increase in battery storage capacity to ~30,000 MWh from a baseline value of ~14,000 MWh was required to reduce the median value of LOLE to ~0.2 days/year with consideration of potential climate impacts and battery degradation.

More Details

FIELD-DEPLOYABLE MICROFLUIDIC IMMUNOASSAY DEVICE FOR PROTEIN DETECTION

2022 Solid State Sensors Actuators and Microsystems Workshop Hilton Head 2022

Choi, Gihoon; Mangadu, Betty; Light, Yooli K.; Meagher, Robert M.

We present a field-deployable microfluidic immunoassay device in response to the need for sensitive, quantitative, and high-throughput protein detection at point-of-need. The portable microfluidic system facilitates eight magnetic bead-based sandwich immunoassays from raw samples in 45 minutes. An innovative bead actuation strategy was incorporated into the system to automate multiple sample process steps with minimal user intervention. The device is capable of quantitative and sensitive protein analysis with a 10 pg/ml detection limit from interleukin 6-spiked human serum samples. We envision the reported device offering ultrasensitive point-of-care immunoassay tests for timely and accurate clinical diagnosis.

More Details
Results 8601–8650 of 99,299
Results 8601–8650 of 99,299