Publications

9 Results

Search results

Jump to search filters

Assessing parallel path cooling tower performance via artificial neural networks

Annals of Nuclear Energy

Katinas, Christopher M.; D'Entremont, Brian; Ray, William; Willis, Michael J.; Reichardt, Thomas A.

Real-time monitoring of a research nuclear reactor, a system in which all generated power is dissipated to the environment, can be performed via analysis of the heat rejection from the cooling system. Given an inlet water temperature and flow rate, the reactor power can be well-approximated from the outlet water temperature; however, the instrumentation to measure outlet conditions may not be robust or accurate. If we know how a cooling tower performs from historical data, but cannot measure the outlet temperature, a mathematical representation of the system can be inverted to obtain the outlet water temperature that describes the cooling capacity. Unfortunately, model inversion processes are computationally expensive. To address this, an artificial neural network (ANN) is implemented to assess the performance of a multi-cell cooling tower for a nuclear reactor. This approach leverages the Merkel model to obtain an extensive data set describing performance of the cooling tower cells throughout a wide array of potential operating conditions. The Merkel model is expressed as a function of four parameters: the inlet and outlet water temperatures, inlet air wet bulb temperature, and ratio of liquid-to-gas mass flow rates (L/G), which together provide a non-dimensional number indicative of cooling tower performance, called the Merkel integral. Computing a 4-dimensional data structure that describes finite combinations of the Merkel integral, an inverse model is then generated using an ANN to determine the cell outlet water temperature from the other three model parameters along with the computed Merkel integral. Compared to traditional model inversion methods, the ANN reduces the computational time by approximately 4 orders of magnitude, with effectively no sacrifice to solution accuracy, and could be applied for different cooling towers in the event the performance curve is known. Finally, three use cases of the ANN are then reviewed: (1) determining the cell outlet water temperatures when gas flow at rated conditions (GFRC) is known, (2) performing the prior case without knowledge of the GRFC, and (3) assessing performance differences between the individual tower cells.

More Details

Calculation of Nuclear Reactor Cooling Tower Performance With Limited Data Streams

Journal of Thermal Science and Engineering Applications

Katinas, Christopher M.; Reichardt, Thomas A.; Kulp, Thomas J.; Entremont, William'; Ray, William; Willis, Michael

Abstract Monitoring of cooling tower performance in a nuclear reactor facility is necessary to ensure safe operation; however, instrumentation for measuring performance characteristics can be difficult to install and may malfunction or break down over long duration experiments. This paper describes employing a thermodynamic approach to quantify cooling tower performance, the Merkel model, which requires only five parameters, namely, inlet water temperature, outlet water temperature, liquid mass flowrate, gas mass flowrate, and wet bulb temperature. Using this model, a general method to determine cooling tower operation for a nuclear reactor was developed in situations when neither the outlet water temperature nor gas mass flowrate are available, the former being a critical piece of information to bound the Merkel integral. Furthermore, when multiple cooling tower cells are used in parallel (as would be in the case of large-scale cooling operations), only the average outlet temperature of the cooling system is used as feedback for fan speed control, increasing the difficulty of obtaining the outlet water temperature for each cell. To address these shortcomings, this paper describes a method to obtain individual cell outlet water temperatures for mechanical forced-air cooling towers via parametric analysis and optimization. In this method, the outlet water temperature for an individual cooling tower cell is acquired as a function of the liquid-to-gas ratio (L/G). Leveraging the tight tolerance on the average outlet water temperature, an error function is generated to describe the deviation of the parameterized L/G to the highly controlled average outlet temperature. The method was able to determine the gas flowrate at rated conditions to be within 3.9% from that obtained from the manufacturer’s specification, while the average error for the four individual cooling cell outlet water temperatures were 1.6 °C, −0.5 °C, −1.0 °C, and 0.3 °C.

More Details

Hyperspectral Signature Analysis and Characterization in Support of Remote Detection of Chemical and Biological Exposures

Proceedings of SPIE - The International Society for Optical Engineering

Katinas, Christopher M.; Timlin, Jerilyn A.; Slater, Jonathon T.; Reichardt, Thomas A.

Remote assessment of physiological parameters has enabled patient diagnostics without the need for a medical professional to become exposed to potential communicable diseases. In particular, early detection of oxygen saturation, abnormal body temperature, heart rate, and/or blood pressure could affect treatment protocols. The modeling effort in this work uses an adding-doubling radiative transfer model of a seven-layer human skin structure to describe absorption and reflection of incident light within each layer. The model was validated using both abiotic and biotic systems to understand light interactions associated with surfaces consisting of complex topography as well as multiple illumination sources. Using literature-based property values for human skin thickness, absorption, and scattering, an average deviation of 7.7% between model prediction and experimental reflectivity was observed in the wavelength range of 500-1000 nm.

More Details
9 Results
9 Results