Publications

7 Results

Search results

Jump to search filters

Spectral analysis and kinetic modeling of radioluminescence in air and nitrogen

Physical Chemistry Chemical Physics

Jans, E.R.; Casey, Tiernan A.; Marshall, Garrett J.; Murzyn, Christopher M.; Harilal, S.S.; Mcdonald, B.S.; Harrison, Richard K.

In this article we present a quantitative analysis of the second positive system of molecular nitrogen and the first negative system of the molecular nitrogen cation excited in the presence of ionizing radiation. Optical emission spectra of atmospheric air and nitrogen surrounding 210Po sources were measured from 250 to 400 nm. Multi-Boltzmann and non-Boltzmann vibrational distribution spectral models were used to determine the vibrational temperature and vibrational distribution function of the emitting N2(C3Πu) and N2+(B2Σ+u) states. A zero-dimensional kinetic model, based on the electron energy distribution function (EEDF) and steady-state excitation and de-excitation of N2(X1Σ+g), N2+(B2Σ+u), N2+(X2Σ+g), N4+, O2+, and N2(C3Πu, v), was developed for the prediction of the relative spectral intensity of both the N2+(B2Σ+u → X2Σ+g) emission band and the vibrational bands of N2(C3Πu → B3Πg) for comparison with the experimental data.

More Details

Compact Bremsstrahlung Diode Development on HERMES-III

Powell, Troy C.; Darr, Adam M.; Renk, Timothy J.; Webb, Timothy J.; Marshall, Garrett J.; Johnston, Mark D.; Mazarakis, Michael G.; Grabowski, Theodore C.; Nicholas, Ryder N.

Testing of a compact Bremsstrahlung diode was performed at the High Energy Radiation Megavolt Electron Source III (HERMES-III) was performed at Sandia National Laboratories in November, 2023. The compact diode described here is the first prototype diode in a campaign to optimize a Bremsstrahlung diode in terms of size and dose production. The goal was to test the diode at about 13MV, and the experiment realized between 10-12MV at the diode. Modeling and simulation of this geometry was performed

More Details

Dotted-line FLEET for two-component velocimetry

Optics Letters

Zhang, Yibin Z.; Richardson, Daniel R.; Marshall, Garrett J.; Beresh, Steven J.; Casper, Katya M.

Femtosecond laser electronic excitation tagging (FLEET) is a powerful unseeded velocimetry technique typically used to measure one component of velocity along a line, or two or three components from a dot. In this Letter, we demonstrate a dotted-line FLEET technique which combines the dense profile capability of a line with the ability to perform two-component velocimetry with a single camera on a dot. Our set-up uses a single beam path to create multiple simultaneous spots, more than previously achieved in other FLEET spot configurations. We perform dotted-line FLEET measurements downstream of a highly turbulent, supersonic nitrogen free jet. Dotted-line FLEET is created by focusing light transmitted by a periodic mask with rectangular slits of 1.6 × 40 mm2 and an edge-to-edge spacing of 0.5 mm, then focusing the imaged light at the measurement region. Up to seven symmetric dots spaced approximately 0.9 mm apart, with mean full-width at half maximum diameters between 150 and 350 µm, are simultaneously imaged. Both streamwise and radial velocities are computed and presented in this Letter.

More Details

Spatially and Temporally Resolved Velocimetry for Hypersonic Flows

Zhang, Yibin Z.; Richardson, Daniel R.; Marshall, Garrett J.; Beresh, Steven J.; Casper, Katya M.

The development of new hypersonic flight vehicles is limited by the physical understanding that may be obtained from ground test facilities. This has motivated the present development of a temporally and spatially resolved velocimetry measurement for Sandia National Laboratories (SNL) Hypersonic Wind Tunnel (HWT) using Femtosecond Laser Electronic Excitation Tagging (FLEET). First, a multi-line FLEET technique has been created for the first time and tested in a supersonic jet, allowing simultaneous measurements of velocities along multiple profiles in a flow. Secondly, two different approaches have been demonstrated for generating dotted FLEET lines. One employs a slit mask pattern focused into points to yield a dotted line, allowing for two- or three-component velocity measurements free of contamination between components. The other dotted-line approach is based upon an optical wedge array and yields a grid of points rather than a dotted line. Two successful FLEET measurement campaigns have been conducted in SNL’s HWT. The first effort established optimal diagnostic configurations in the hypersonic environment based on earlier benchtop reproductions, including validation of the use of a 267 nm beam to boost the measurement signal-to-noise ratio (SNR) with minimal risk of perturbing the flow and greater simplicity than a comparable resonant technique at 202 nm. The same FLEET system subsequently was reconstituted to demonstrate the ability to make velocimetry measurements of hypersonic turbulence in a realistic flow field. Mean velocity profiles and turbulence intensity profiles of the shear layer in the wake of a hypersonic cone model were measured at several different downstream stations, proving the viability of FLEET as a hypersonic diagnostic.

More Details

Developing multi-line fleet using periodic mask design

AIAA Scitech 2021 Forum

Marshall, Garrett J.; Zhang, Yibin Z.; Beresh, Steven J.; Richardson, Daniel R.; Casper, Katya M.

This study seeks to simplify the optical requirements for multi-line FLEET (Femtosecond Laser Electronic Excitation Tagging) generation by focusing the image of a periodic slit-mask with a cylindrical and spherical lens. Geometry effects on the signal were analyzed over fifteen mask iterations. The signal for each mask was found to vary with mask standoff from the focusing optics, which was optimized based on maximizing the Signal-to-Noise Ratio (SNR) for each mask. The number of generated lines was found to decrease with slit spacing while the separation of the lines increased. FLEET line spacing was determined by a constant magnification value of the imaged masks’ slit spacing. From the geometry study, two masks that produced three to five lines spaced at 0.8–1 mm apart with SNR > 4 were chosen to demonstrate the multi-line technique in a supersonic free-jet. Velocity calculations from this data showed good agreement with schlieren imaging of compressible flow structures.

More Details

Multi-line FLEET by imaging periodic masks

Optics Letters

Zhang, Yibin Z.; Marshall, Garrett J.; Beresh, Steven J.; Richardson, Daniel R.; Casper, Katya M.

A simple linear configuration for multi-line femtosecond laser electronic excitation tagging (FLEET) velocimetry is used for the first time, to the best of our knowledge, to image an overexpanded unsteady supersonic jet. The FLEET lines are spaced 0.5-1.0mmapart, and up to six lines can be used simultaneously to visualize the flowfield. These lines are created using periodic masks, despite the mask blocking 25%-30%of the 10 mJ incident beam.Maps of mean singlecomponent velocity in the direction along the principal flow axis, and turbulence intensity in that same direction, are created using multi-line FLEET, and computed velocities agree well with those obtained from single-line (traditional) FLEET. Compared to traditional FLEET, multi-line FLEET offers increased simultaneous spatial coverage and the ability to produce spatial correlations in the streamwise direction. This FLEET permutation is especially well suited for short-duration test facilities.

More Details
7 Results
7 Results