Publications

6 Results
Skip to search filters

Modifications implemented for the 2014 wipp compliance recertification application and their impacts on regulatory compliance

PSAM 2016 - 13th International Conference on Probabilistic Safety Assessment and Management

Camphouse, R.C.; Zeitler, Todd Z.; Kim, Sungtae K.; Herrick, Courtney G.; Kicker, Dwayne C.

The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico of the United States (U.S.), has been developed by the U.S. Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste. The DOE demonstrates compliance with the WIPP containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. WIPP PA models are used (in part) to support the repository recertification process that occurs at five-year intervals following the receipt of the first waste shipment at the site in 1999. The PA executed in support of the 2014 Compliance Recertification Application (CRA-2014) for WIPP includes a number of parameter, implementation, and repository feature changes. Among these changes are the incorporation of a new panel closure system design, additional mined volume in the north end of the repository, a refinement to the PA representation of WIPP waste shear strength, and a gas generation rate refinement. These changes are briefly discussed, as is their cumulative impact on regulatory compliance for the facility. The federal recertification status of the WIPP is also discussed.

More Details

Impact of Corrections to the Spallings Volume Calculation on Waste Isolation Pilot Plant Performance Assessment [Poster]

Kicker, Dwayne C.; Herrick, Courtney G.; Zeitler, Todd Z.

The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations. Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.

More Details

DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment

Kicker, Dwayne C.; Herrick, Courtney G.; Zeitler, Todd Z.; Malama, Bwalya M.; Rudeen, David K.; Gilkey, Amy P.

The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.

More Details
6 Results
6 Results