Publications

Results 83401–83600 of 96,771

Search results

Jump to search filters

Optical testing of polycrystalline silicon flexure-type optical actuators

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Serrano, Justin R.; Phinney, Leslie M.

Optical actuation is a necessity for the development of all-optical MEMS devices. Optically-powered actuators relying on a photothermal process are limited by overheating and structural damage resulting from the absorption of laser power. Surface micromachined polycrystalline silicon (polysilicon) optical actuators, powered using an 808 nm continuous wave laser, were evaluated for displacement performance and susceptibility to damage. The tested actuators were of a flexure-type design fabricated from either a single 2.25 μm polysilicon layer or a 4.5 μm polysilicon laminate layer, and in three different designs. Displacement of the actuators was linear with power for all tested designs for powers below those that cause damage to the irradiated surface. Maximum displacement observed was in the 7-9 μm range regardless of actuator design. After surface damage is initiated, displacement of the actuator during irradiation recedes in all actuators, with actuators with a 50 μm-wide target surface exhibiting complete recession in their displacement. The return position of the actuators after the irradiated surface has damaged also exhibits recession on the order of 4-5 μm for surfaces damaged with up to 650 mW. Exposing the actuator surfaces to longer irradiation times had no effect on the displacement if the surface had no damage, but resulted in regression of the displacement as the irradiation time increased if the surface had preexisting damage. Copyright © 2006 by ASME.

More Details

Analyzing mechanical responses of microstructures from optical heating

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Wong, Chungnin C.; Spahn, Olga B.; Phinney, Leslie M.

Optical microswitches are being developed for use in communication and security systems because of their small size and fast response time. However, as the intensity of the light incident on the microswitches increases, the thermal and mechanical responses of the reflective surfaces are becoming a concern. It is important to dissipate heat adequately and to minimize any deformation on the reflective surfaces. To understand the mechanical responses of these microswitches, a set of microstructures have been fabricated and tested to evaluate how the surfaces deform when irradiated with a high-intensity laser beam. To evaluate and further investigate the experimental findings, the coupled physical analysis tool, Calagio, has been applied to simulate the mechanical behavior of these test structures when they are optically heated. Code prediction of the surface displacement will be compared against measurement. Our main objective is to assess the existing material models and our code predictive capability so that it will be used to qualify the performance of microswitches being developed.

More Details

Design of a silicon micromachined artifact for hybrid dimensional measurement

Proceedings of the International Conference on Manufacturing Science and Engineering

Oliver, Andrew D.; Tran, Hy D.; Claudet, Andre C.

We are developing calibration artifacts for mesoscale metrology (especially vision probing) by using silicon bulk micromachining. We evaluate these artifacts on both high accuracy coordinate measuring machines (CMMs) and on typical production vision-based measurement systems. This will improve the accuracy of vision-based measurement equipment used in production. Successful realization of these mesoscale artifacts will enhance both production metrology capabilities and reduce manufacturing costs. Copyright © 2006 by ASME.

More Details

Van der Waals and capillary adhesion of microelectromechanical systems

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Delrio, Frank W.; De Boer, Maarten P.; Phinney, Leslie M.; Bourdon, Christopher B.; Dunn, Martin L.

Interfacial adhesion is an important factor in determining the performance and reliability of microelectromechanical systems (MEMS). Van der Waals dispersion forces are the dominant adhesion mechanism in the low relative humidity (RH) regime. At small roughness values, adhesion is mainly due to van der Waals dispersion forces acting across extensive non-contacting areas and is related to 1/Dave2, where Dave is the average surface separation. These contributions must be considered due to the close proximity of the surfaces, which is a result of the planar deposition technology. At large roughness values, van der Waals forces at contacting asperities become the dominating contributor to the adhesion. Capillary condensation of water has a significant effect on rough surface adhesion in the moderate to high RH regime. Above a threshold RH, which is a function of the surface roughness, the adhesion jumps due to meniscus formation at the interface and increases rapidly towards the upper limit of Γ=2γcosθ=44 mJ/m2, where γis the liquid surface energy and θis the contact angle. Copyright © 2006 by ASME.

More Details

Investigation of break-up, splash, and fingerlike instabilities for a large water slug impact

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED

Jepsen, Richard A.; Yoon, Sam S.; James, Scott C.

The fluid physics of splashing, spreading, and dispersion of a large-scale water droplet is investigated both experimentally and with model simulation. Several new phenomena of the droplet impact beyond conventional Rayleigh-Taylor instability theory are reported. First, our experimental data show that the number of fingers or instabilities along the spreading rim cannot be predicted by Allen's (1975) Rayleigh-Taylor equation. Second, we report that the surrounding medium (air) along with impact angle and droplet shape upon impact affect ejection velocity and splashing. Finally, the fundamental instability of the finger formation along the spreading rim may be due to interactions initiated by the compressed and displaced air, rather than the spreading of the liquid decelerating through the air. Several important correlations between the droplet impact velocities, the amount of spray ejected, the spray ejection speed, and the number of fingers or instabilities are presented. Copyright © 2006 by ASME.

More Details

Polymer electronic devices and materials

Wheeler, David R.; Dirk, Shawn M.; Schubert, William K.; Anderson, Gene R.; Baca, Paul M.

Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

More Details

Restoring force surface analysis of nonlinear vibration data from micro-cantilever beams

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Allen, Matthew S.; Sumali, Hartono S.; Epp, David E.

The responses of micro-cantilever beams, with lengths ranging from 100-1500 microns, have been found to exhibit nonlinear dynamic characteristics at very low vibration amplitudes and in near vacuum. This work seeks to find a functional form for the nonlinear forces acting on the beams in order to aide in identifying their cause. In this paper, the restoring force surface method is used to non-parametrically identify the nonlinear forces acting on a 200 micron long beam. The beam response to sinusoidal excitation contains as many as 19 significant harmonics within the measurement bandwidth. The nonlinear forces on the beam are found to be oscillatory and to depend on the beam velocity. A piecewise linear curve is fit to the response in order to more easily compare the restoring forces obtained at various amplitudes. The analysis illustrates the utility of the restoring force surface method on a system with complex and highly nonlinear forces. Copyright © 2006 by ASME.

More Details

Maximizing storage rates and capacity of carbon dioxide sequestration in saline reservoirs

WIT Transactions on Ecology and the Environment

Abou-Sayed, A.; Guo, Q.; Graham, A.L.; Mondy, L.A.; Ingber, M.S.; Mammoli, A.A.

The Kyoto Accords have been signed by 140 nations in order to significantly reduce carbon dioxide emissions into the atmosphere in the medium to long term. In order to achieve this goal without drastic reductions in fossil fuel usage, carbon dioxide must be removed from the atmosphere and stored in acceptable reservoirs. Research has been undertaken to develop economical new technologies for the transfer and storage of carbon dioxide in saline aquifers. In order to maximize the storage rate, the aquifer is first hydraulically fractured in a conventional well stimulation treatment with a slurry containing solid proppant. Well fracturing would increase the injection volume flowrate greatly. In addition, there are several ancillary benefits including extension of the reservoir early storage volume by moving the carbon dioxide further from the well. This extended reach would mitigate the problems with the buoyant plume and increase the surface area between the carbon dioxide and the formation facilitating absorption. A life-cycle cost estimate has been performed showing the benefits of this approach compared to injection without fracturing.

More Details

Rapid fluorescence-activated cell sorting with optical-force deflection in a microfluidic device

Micro Total Analysis Systems - Proceedings of MicroTAS 2006 Conference: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Perroud, Thomas D.; Patel, Kamlesh P.

We present our initial results on the integration of a fluorescence- activated cell sorter into a microfluidic platform for the study of macrophages. We show that hydrodynamically focused macrophages can be efficiently sorted into another laminar flow by optical-force deflection, similar to optical tweezers. Although high laser power is required for sorting macrophages, initial observations show no obvious laser damage to the cells. © 2006 Society for Chemistry and Micro-Nano Systems.

More Details

Diffusion-based free solution DNA hybridization and transport in a nanofluidic device

Micro Total Analysis Systems - Proceedings of MicroTAS 2006 Conference: 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Pennathur, Sumita P.; Huber, David; Rhieu, Steve; Patel, Kamlesh D.

We report numerical, and experimental studies of diffusion-based, free-solution hybridization of nucleic acids in a nanofluidic device. We present continuum-based models for transport of oligonucleotides in a nanofluidic T-junction serpentine channel. © 2006 Society for Chemistry and Micro-Nano Systems.

More Details

Z-pinch requirements for achieving high yield fusion via a z-pinch driven, double ended hohlraum concept

2006 International Conference on Megagauss Magnetic Field Generation and Related Topics, including the International Workshop on High Energy Liners and High Energy Density Applications, MEGAGAUSS

Lemke, Raymond W.; Vesey, Roger A.; Cuneo, M.E.; Desjarlais, Michael P.; Mehlhorn, Thomas A.

Using two-dimensional (2D), radiation magnetohydrodynamics (RMHD) numerical simulations, we have designed a feasible z-pinch radiation source that ignites a high yield fuel capsule in a z-pinch driven, double ended hohlraum concept. The z-pinch is composed of nested beryllium (Be) shells and a coaxial, cylindrical foam converter. The z-pinch is designed to produce a shaped radiation pulse that compresses a capsule by a sequence of three shocks without significant entropy increase. We present results of simulations pertaining to the z-pinch design, and discuss conditions that must be achieved in the z-pinch to ensure production of the required radiation pulse. © 2008 IEEE.

More Details

Validation of a new aluminum honeycomb constitutive model for impact analyses

Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Transportation

Hinnerichs, Terry D.; Pulling, Eric P.; Neilsen, Michael K.; Lu, Wei-Yang L.

A new constitutive model for large deformation of aluminum honeycomb has been developed. This model has 6 yield surfaces that are coupled to account for the orthotropic behavior of the cellular honeycomb being crushed on-axis and off-axis. Model parameters have been identified to fit uniaxial and biaxial crush test data for high density (38 1b/ft3) aluminum honeycomb. The honeycomb crush model has been implemented in the transient dynamic Presto finite element code for impact simulations. Simulations of calibration and validation experiments will be shown with model predictions compared with test data. Also, the honeycomb model's predictions will be compared with the older Orthotropic Rate Model predictions. Copyright © 2006 by ASME.

More Details

A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data

Marzouk, Youssef M.

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.

More Details

LDRD final report on high power broadly tunable Mid-IR quantum cascade lasers for improved chemical species detection

Young, Erik W.; Wanke, Michael W.; Klem, John F.; Fuller, Charles T.; Hudgens, James J.

The goal of our project was to examine a novel quantum cascade laser design that should inherently increase the output power of the laser while simultaneously providing a broad tuning range. Such a laser source enables multiple chemical species identification with a single laser and/or very broad frequency coverage with a small number of different lasers, thus reducing the size and cost of laser based chemical detection systems. In our design concept, the discrete states in quantum cascade lasers are replaced by minibands made of multiple closely spaced electron levels. To facilitate the arduous task of designing miniband-to-miniband quantum cascade lasers, we developed a program that works in conjunction with our existing modeling software to completely automate the design process. Laser designs were grown, characterized, and iterated. The details of the automated design program and the measurement results are summarized in this report.

More Details

Human performance modeling for system of systems analytics: combat performance-shaping factors

Miller, Dwight P.; Lawton, Craig R.

The US military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives. To support this goal, Sandia National Laboratories (SNL) has undertaken a program of HPM as an integral augmentation to its system-of-system (SoS) analytics capabilities. The previous effort, reported in SAND2005-6569, evaluated the effects of soldier cognitive fatigue on SoS performance. The current effort began with a very broad survey of any performance-shaping factors (PSFs) that also might affect soldiers performance in combat situations. The work included consideration of three different approaches to cognition modeling and how appropriate they would be for application to SoS analytics. This bulk of this report categorizes 47 PSFs into three groups (internal, external, and task-related) and provides brief descriptions of how each affects combat performance, according to the literature. The PSFs were then assembled into a matrix with 22 representative military tasks and assigned one of four levels of estimated negative impact on task performance, based on the literature. Blank versions of the matrix were then sent to two ex-military subject-matter experts to be filled out based on their personal experiences. Data analysis was performed to identify the consensus most influential PSFs. Results indicate that combat-related injury, cognitive fatigue, inadequate training, physical fatigue, thirst, stress, poor perceptual processing, and presence of chemical agents are among the PSFs with the most negative impact on combat performance.

More Details

The strain-rate sensitivity of high-strength high-toughness steels

Boyce, Brad B.; Crenshaw, Thomas B.

The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

More Details

Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images

Doerry, Armin

Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

More Details

Performance testing of aged hydrogen getters against criteria for interim safe storage of plutonium bearing materials

Nissen, April E.; Buffleben, George M.; Shepodd, Timothy J.

Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The hydrogen getter HITOP was aged for 3 months at 70 C and tested under both recombination and hydrogenation conditions at 20 and 70 C; partially saturated and irradiated aged getter samples were also tested. The recombination reaction was found to be very fast and well above the required rate of 45 std. cc H2h. The gettering reaction, which is planned as the backup reaction in this deployment, is slower and may not meet the requirements alone. Pressure drop measurements and {sup 1}H NMR analyses support these conclusions. Although the experimental conditions do not exactly replicate the deployment conditions, the results of our conservative experiments are clear: the aged getter shows sufficient reactivity to maintain hydrogen concentrations below the flammability limit, between the minimum and maximum deployment temperatures, for three months. The flammability risk is further reduced by the removal of oxygen through the recombination reaction. Neither radiation exposure nor thermal aging sufficiently degrades the getter to be a concern. Future testing to evaluate performance for longer aging periods is in progress.

More Details

Design and manufacturing of complex optics: the dragonfly eye optic

Gill, David D.; Sweatt, W.C.; Claudet, Andre C.; Hodges, Vernon C.; Adams, David P.

The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

More Details

Edge energies and shapes of nanoprecipitates

Hamilton, John C.

In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

More Details

Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites

Hammerand, Daniel C.

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties are obtained from the finite element results. These effective elastic properties are compared to approximate analytical results found using micromechanics methods. The effects of an interphase layer between the high-stiffness hollow fibers and matrix to simulate imperfect load transfer and/or functionalization of the hollow fibers is also investigated and compared to a multi-layer composite cylinders approach. Finally the combined effects of clustering with fiber-matrix interphase regions are studied. The parametric studies performed herein were motivated by and used properties for single-walled carbon nanotubes embedded in an epoxy matrix, and as such are intended to serve as a guide for continuum level representations of such nanocomposites in a multi-scale modeling approach.

More Details

Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

More Details

Modeling and simulation technology readiness levels

Clay, Robert L.; Marburger, Scot J.; Shneider, Max S.; Trucano, Timothy G.

This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to examine how this would work in practice. The results varied substantially, but did indicate that establishing the capability dependencies and making the TRL assignments was manageable and not particularly time consuming. The key differences arose in perceptions of how this information might be used, and what value it would have (opinions ranged from negative to positive value). The use cases and field trial results are included in this report. Taken together, the results suggest that we can make reasonably reliable TRL assignments, but that using those without the context of the information that led to those results (i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL purposes) produces an oversimplified result--that is, you cannot really boil things down to just a scalar value without losing critical information.

More Details

Experiments for calibration and validation of plasticity and failure material modeling: 304L stainless steel

Thomes, William J.

Experimental data for material plasticity and failure model calibration and validation were obtained from 304L stainless steel. Model calibration data were taken from smooth tension, notched tension, and compression tests. Model validation data were provided from experiments using thin-walled tube specimens subjected to path dependent combinations of internal pressure, extension, and torsion.

More Details

Efficient all-solid-state UV lidar sources: From 100's of millijoules to 100's of microjoules

Proceedings of SPIE - The International Society for Optical Engineering

Armstrong, Darrell J.; Smith, A.V.

Sandia National Laboratories has developed high-energy all-solid-state UV sources for use in laboratory tests of the feasibility of satellite-based ozone DIAL. These sources generate 320 nm light by sum-frequency mixing the 532 nm second harmonic of an Nd:YAG laser with the 803 nm signal light derived from a self-injection-seeded image-rotating optical parametric oscillator (OPO). The OPO cavity utilizes the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. Two configurations were developed, one using extra-cavity sum-frequency mixing, where the sum-frequency-generation (SFG) crystal is outside the OPO cavity, and the other intra-cavity mixing, where the SFG crystal is placed inside the OPO cavity. Our goal was to obtain 200 mJ, 10 ns duration, 320 nm pulses at 10 Hz with near-IR to UV (1064 nm to 320 nm) optical conversion efficiency of 25%. To date we've obtained 190 mJ at 320 nm using extra-cavity SFG with 21% efficiency, and > 140 mJ by intra-cavity SFG with efficiency approaching 24%. While these results are encouraging, we've determined our conversion efficiency can be enhanced by replacing self-seeding at the signal wavelength of 803 nm with pulsed idler seeding at 1576 nm. By switching to idler seeding and increasing the OPO cavity dimensions to accommodate flat-top beams with diameters up to 10 mm, we expect to generate UV energies approaching 300 mJ with optical conversion efficiency approaching 25%. While our technology was originally designed to obtain high pulse energies, it can also be used to generate low-energy UV pulses with high efficiency. Numerical simulations using an idler-seeded intra-cavity SFG RISTRA OPO scaled to half its nominal dimensions yielded 560 μJ of 320 nm light from 2 mJ of 532 nm pump using an idler-seed energy of 100 μJ.

More Details

Segmenting clouds from space: A hybrid multispectral classification algorithm for satellite imagery

Proceedings of SPIE - The International Society for Optical Engineering

Wilson, Mark P.; Nandy, Prabal; Post, Brian N.; Smith, Jody; Wehlburg, Joseph C.

This paper reports on a novel approach to atmospheric cloud segmentation from a space based multi-spectral pushbroom satellite system. The satellite collects 15 spectral bands ranging from visible, 0.45 urn, to long wave in fared (IR), 10.7um. The images are radiometrically calibrated and have ground sample distances (GSD) of 5 meters for visible to very near IR bands and a GSD of 20 meters for near IR to long wave IR. The algorithm consists of a hybrid-classification system in the sense that supervised and unsupervised networks are used in conjunction. For performance evaluation, a series of numerical comparisons to human derived cloud borders were performed. A set of 33 scenes were selected to represent various climate zones with different land cover from around the world. The algorithm consisted of the following. Band separation was performed to find the band combinations which form significant separation between cloud and background classes. The potential bands are fed into a K-Means clustering algorithm in order to identify areas in the image which have similar centroids. Each cluster is then compared to the cloud and background prototypes using the Jeffries-Matusita distance. A minimum distance is found and each unknown cluster is assigned to their appropriate prototype. A classification rate of 88% was found when using one short wave IR band and one midwave IR band. Past investigators have reported segmentation accuracies ranging from 67% to 80%, many of which require human intervention. A sensitivity of 75% and specificity of 90% were reported as well.

More Details

Scaling of domain size during spinodal decomposition: Dislocation discreteness and mobility effects

Applied Physics Letters

Haataja, Mikko; Mahon, Jennifer; Provatas, Nikolas; Leonard, Francois L.

In this letter, we examine the effects of discrete mobile dislocations on spinodal decomposition kinetics in lattice mismatched binary alloys. By employing a novel continuum model, we demonstrate that the effects of dislocation mobility on domain coarsening kinetics can be expressed in a unified manner through a scaling function, describing a crossover from t12 to t13 behavior. © 2005 American Institute of Physics.

More Details

Numerical analyses of locomotive impacts on a spent fuel truck cask and trailer

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ammerman, Douglas J.; Stevens, Dave; Barsotti, Matt

During the transportation of spent nuclear fuel by truck, the possibility exists that a train could run into the spent fuel cask at a grade crossing. Sandia National Laboratories has conducted a numerical study to assess the possibility of cask breach or material release in the event of a high-speed, broadside locomotive collision. A numerical approach has the advantage over conducting a physical test as was done in the 1970s [1] in that varying parameters can be examined. For example, one of the criticisms of the 1970s test was the height of the cask. In the test, the centerline of the cask was above the main frame-rails of the locomotive. In this study the position of the cask with respect to the locomotive was varied. The response of the cask and trailer in different collision scenarios was modeled numerically with LS-DYNA [2]. The simulations were performed as a collaborative endeavor between Sandia National Laboratories (SNL), Applied Research Associates, Inc. (ARA) and Foster-Miller, Inc (FMI). ARA developed the GA-4 Spent Fuel Cask and Cask Transporter models described in this report. These models were then combined with two existing FMI heavy freight locomotive finite element models to create the overall simulation scenarios. The modeling effort, results, and conclusions are presented in this paper. Copyright © 2005 by ASME.

More Details

Semi-infinite target penetration by ogive-nose penetrators: ALEGRA/SHISM code predictions for ideal and non-ideal impacts

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Bishop, Joseph E.; Voth, Thomas E.; Brown, Kevin H.

The physics of ballistic penetration mechanics is of great interest in penetrator and counter-measure design. The phenomenology associated with these events can be quite complex and a significant number of studies have been conducted ranging from purely experimental to 'engineering' models based on empirical and/or analytical descriptions to fully-coupled penetrator/target, thermo-mechanical numerical simulations. Until recently, however, there appears to be a paucity of numerical studies considering 'non-ideal' impacts [1]. The goal of this work is to demonstrate the SHISM algorithm implemented in the ALEGRA Multi-Material ALE (Arbitrary Lagrangian Eulerian) code [13]. The SHISM algorithm models the three-dimensional continuum solid mechanics response of the target and penetrator in a fully coupled manner. This capability allows for the study of 'non-ideal' impacts (e.g. pitch, yaw and/or obliquity of the target/penetrator pair). In this work predictions using the SHISM algorithm are compared to previously published experimental results for selected ideal and non-ideal impacts of metal penetrator-target pairs. These results show good agreement between predicted and measured maximum depth-of-penetration, DOP, for ogive-nose penetrators with striking velocities in the 0.5 to 1.5 km/s range. Ideal impact simulations demonstrate convergence in predicted DOP for the velocity range considered. A theory is advanced to explain disagreement between predicted and measured DOP at higher striking velocities. This theory postulates uncertainties in angle-of-attack for the observed discrepancies. It is noted that material models and associated parameters used here, were unmodified from those in the literature. Hence, no tuning of models was performed to match experimental data. Copyright © 2005 by ASME.

More Details

Kevlar and Carbon Composite body armor - Analysis and testing

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Uekert, Vanessa S.; Stofleth, Jerome H.; Preece, Dale S.; Risenmay, Matthew A.

Kevlar materials make excellent body armor due to their fabric-like flexibility and ultra-high tensile strength. Carbon composites are made up from many layers of carbon AS-4 material impregnated with epoxy. Fiber orientation is bidirectional, orientated at 0° and 90°. They also have ultra-high tensile strength but can be made into relatively hard armor pieces. Once many layers are cut and assembled they can be ergonomicically shaped in a mold during the heated curing process. Kevlar and carbon composites can be used together to produce light and effective body armor. This paper will focus on computer analysis and laboratory testing of a Kevlar/carbon composite cross-section proposed for body armor development. The carbon composite is inserted between layers of Kevlar. The computer analysis was performed with a Lagrangian transversely Isotropic material model for both the Kevlar and Carbon Composite. The computer code employed is AUTODYN. Both the computer analysis and laboratory testing utilized different fragments sizes of hardened steel impacting on the armor cross-section. The steel fragments are right-circular cylinders. Laboratory testing was undertaken by firing various sizes of hardened steel fragments at square test coupons of Kevlar layers and heat cured carbon composites. The V50 velocity for the various fragment sizes was determined from the testing. This V50 data can be used to compare the body armor design with other previously designed armor systems. AUTODYN [1] computer simulations of the fragment impacts were compared to the experimental results and used to evaluate and guide the overall design process. This paper will include the detailed transversely isotropic computer simulations of the Kevlar/carbon composite cross-section as well as the experimental results and a comparison between the two. Conclusions will be drawn about the design process and the validity of current computer modeling methods for Kevlar and carbon composites. Copyright © 2005 by ASME.

More Details

Empirical slip and viscosity model performance for microscale gas flow

International Journal for Numerical Methods in Fluids

McNenly, Matthew J.; Gallis, Michael A.; Boyd, Iain D.

For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L2 error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger. Copyright © 2005 John Wiley & Sons, Ltd.

More Details

Long-working-distance incoherent-light interference microscope

Applied Optics

Sinclair, Michael B.; De Boer, Maarten P.; Corwin, Alex D.

We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5×, 10×, and 20× long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes. © 2005 Optical Society of America.

More Details

An experimental investigation of the effect of walls on gas-liquid flows through fixed particle

Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference

Cooper, Marcia A.; Cote, Raymond O.; O'Hern, Timothy J.; Torczynski, J.R.; Evans, Lindsey R.; Cross, William M.

The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter in the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow. Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates. Copyright © 2005 by ASME.

More Details

Testing IFE materials on Z

Journal of Nuclear Materials

Tanaka, Tina J.; Rochau, Gary E.; Peterson, Robert R.; Olson, Craig L.

On a single-pulse basis, the tungsten armor for the chamber walls in a laser inertial fusion energy power plant must withstand X-ray fluences of 0.4-1.2 J/cm2 with almost no mass loss, and preferably no surface changes. We have exposed preheated tungsten samples to 0.27 and 0.9 J/cm 2 X-ray fluence from the Z accelerator at Sandia National Laboratories to determine the single-shot X-ray damage threshold. Earlier focused ion beam analysis has shown that rolled powdered metal formed tungsten and tungsten alloys, will melt when exposed to 2.3 J/cm2 on Z, but not at 1.3 J/cm2. Three forms of tungsten - single-crystal (SING), chemical-vapor-deposited (CVD), and rolled powdered metal (PWM) - were exposed to fluence levels of 0.9 J/cm2 without any apparent melting. However, the CVD and PWM sample surfaces were rougher after exposure than the SING sample, which was not roughened. BUCKY (1D) calculations show a threshold of 0.5 J/cm2 for melting on Z. The present experiments indicate no melting but limited surface changes occur with polycrystalline samples (PWM and CVD) at 0.9 J/cm2 and no surface changes other than debris for samples at 0.27 J/cm2. © 2005 Elsevier B.V. All rights reserved.

More Details

Thermal decomposition of energetic materials. 5. Reaction processes of 1,3,5-trinitrohexahydro-s-triazine below Its melting point

Journal of Physical Chemistry A

Maharrey, Sean P.; Behrens, Richard

Through the use of simultaneous thermogravimetry modulated beam mass spectrometry, optical microscopy, hot-stage time-lapsed microscopy, and scanning electron microscopy measurements, the physical and chemical processes that control the thermal decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX) below its melting point (160-189°C) have been identified. Two gas-phase reactions of RDX are predominant during the early stages of an experiment. One involves the loss of HONO and HNO and leads to the formation of H 2O, NO, NO 2, and oxy-s-triazine (OST) or s-triazine. The other involves the reaction of NO with RDX to form NO 2 and 1-nitroso-3,5-dinitrohexahydro-s-triazine (ONDNTA), which subsequently decompose's to form a set of products of which CH 2O and N 2O are the most abundant. Products from the gas-phase RDX decomposition reactions, such as ONDNTA, deposit on the surface of the RDX particles and lead to the development of a new set of reaction pathways that occur on the surface of the RDX particles. The initial surface reactions occur on surfaces of those RDX particles in the sample that can accumulate the greatest amount of products from the gas-phase reactions. Initial surface reactions are characterized by the formation of islands of reactivity on the RDX surface and lead to the development of an orange-colored nonvolatile residue (NVR) film on the surface of the RDX particles. The NVR film is most likely formed via the decomposition of ONDNTA on the surface of the RDX particles. The NVR film is a nonstoichiometric and dynamic material, which reacts directly with RDX and ONDNTA, and is composed of remnants from RDX and ONDNTA molecules that have reacted with the NVR. Reactions involving the NVR become dominant during the later stage of the decomposition process. The NVR reacts with RDX to form ONDNTA via abstraction of an oxygen atom from an NO 2 group. ONDNTA may undergo rapid loss of N 2 and NO 2 with the remaining portion of the molecule being incorporated into the dynamic NVR. The dynamic NVR also decomposes and leads to the formation of H 2O, CH 2O, N 2O, NH 2CHO, (CH 3) 2NCHO, (CH 3) 2NNO, C 2H 2N 2O, and (CH 3) 3N or CH 3NCH 2CH 3. The competition between reaction of the dynamic NVR with RDX and its own thermal decomposition manifests itself in a rapid increase in the rate of evolution of the NVR decomposition products as the amount of RDX remaining in the sample nears depletion. The reactions between the NVR film and RDX on the surface of the RDX particles leads to a localized environment that creates a layer of molten RDX on the surface of the particles where reactions associated with the liquid-phase decomposition of RDX may occur. The combination of these reaction processes leads to an acceleration of the reaction rate in the later stage of the decomposition process and creates an apparent reaction rate behavior that has been referred to as autocatalytic in many previous studies of RDX decomposition. A reaction scheme summarizing the reaction pathways that contribute to the decomposition of RDX below its melting point is presented. © 2005 American Chemical Society.

More Details

Encapsulation of semiconducting nanoclusters in amine-functionalized ormosils

Proceedings - Electrochemical Society

Thoma, S.G.; Wilcoxon, Jess P.; Abrams, B.L.; Sanchez, A.

Inorganic nanoclusters dispersed in organic matrices are of importance to a number of emerging technologies. However, obtaining useful properties from such organic-inorganic composites often requires high concentrations of well-dispersed nanoclusters. In order to achieve this goal the chemistry of the particle surface and the matrix must be closely matched. This is based on the premise of minimization of the interfacial free energy; an excess of free energy will cause phase separation and ultimately aggregation. Thus, the optimal system is one in which the nanoclusters are stabilized by the same molecules that make up the encapsulant. Yet, the organic matrix is typically chosen for its bulk properties, and therefore may not be amenable to chemical modification. Also, the organic-inorganic interface is often critical to establishing and maintaining the desired nanocluster (and hence composite) properties, placing further constraints on proposed chemical modification. For these reasons we have adopted the use of aminefunctionalized trimethoxysilanes (ormosils) as an optical grade encapsulant. In this work, we demonstrate that ormosils can produce beneficial optical effects that are derived from interfacial phenomena, which can be maintained throughout the encapsulation process.

More Details

A three-dimensional neural recording microsystem with implantable data compression circuitry

Digest of Technical Papers - IEEE International Solid-State Circuits Conference

Olsson, Roy H.; Wise, Kensall

A 256-site microsystem comprises 4 neural recording arrays with integrated amplification and multiplexing circuitry and an implantable spike detection ASIC. The spike detector compresses the amount of neural data by 92%, increasing the total number of channels recorded wirelessly from 25 to 312. The implantable circuitry consumes 5.4mW at 3V. ©2005 IEEE.

More Details

Tensor-Krylov methods for solving large-scale systems of nonlinear equations

SIAM Journal on Numerical Analysis

Bader, Brett W.

This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor methods to large-scale problems by developing three tensor-Krylov methods that base each iteration upon a linear model augmented with a limited second-order term, which provides information lacking in a (nearly) singular Jacobian. The advantage of the new tensor-Krylov methods over existing large-scale tensor methods is their ability to solve the local tensor model to a specified accuracy, which produces a more accurate tensor step. The performance of these methods in comparison to Newton-GMRES and tensor-GMRES is explored on three Navier-Stokes fluid flow problems. The numerical results provide evidence that tensor-Krylov methods are generally more robust and more efficient than Newton-GMRES on some important and difficult problems. In addition, the results show that the new tensor-Krylov methods and tensor-GMRES each perform better in certain situations. © 2005 Society for Industrial and Applied Mathematics.

More Details

Hard-rock field performance of drag bits and a downhole Diagnostics-While-Drilling (DWD) tool

Transactions - Geothermal Resources Council

Wise, Jack L.; Mansure, Arthur J.; Blankenship, Douglas A.

A series of field tests sponsored by Sandia National Laboratories has simultaneously demonstrated the hard-rock drilling performance of different industry-supplied drag bits as well as Sandia's new Diagnostics-While-Drilling (DWD) system, which features a novel downhole tool that monitors dynamic conditions in close proximity to the bit. Drilling with both conventional and advanced ("best effort") drag bits was conducted at the GTI Catoosa Test Facility (near Tulsa, OK) in a well-characterized lithologic column that features an extended hard-rock interval of Mississippi limestone above a layer of highly abrasive Misener sandstone and an underlying section of hard Arbuckle dolomite. Output from the DWD system was closely observed during drilling and was used to make real-time decisions for adjusting the drilling parameters. This paper summarizes penetration rate and damage results for the various drag bits, shows representative DWD display data, and illustrates the application of these data for optimizing drilling performance and avoiding trouble.

More Details

A comparison of mechanical properties of three MEMS materials - Silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon (Ta-C)

11th International Conference on Fracture 2005, ICF11

Espinosa, H.D.; Peng, B.; Moldovan, N.; Friedmann, Thomas A.; Xiao, X.; Mancini, D.C.; Auciello, O.; Carlisle, J.; Zorman, C.A.

Many MEMS devices are based on polysilicon because of the current availability of surface micromachining technology. However, polysilicon is not the best choice for devices where extensive sliding and/or thermal fields are applied due to its chemical, mechanical and tribological properties. In this work, we investigated the mechanical properties of three new materials for MEMS/NEMS devices: silicon carbide (SiC) from Case Western Reserve University (CWRU), ultrananocrystalline diamond (UNCD) from Argonne National Laboratory (ANL), and hydrogen-free tetrahedral amorphous carbon (ta-C) from Sandia National Laboratories (SNL). Young's modulus, characteristic strength, fracture toughness, and theoretical strength were measured for these three materials using only one testing methodology - the Membrane Deflection Experiment (MDE) developed at Northwestern University. The measured values of Young's modulus were 430GPa, 960GPa, and 800GPa for SiC, UNCD, and ta-C, repectively. Fracture toughness measurments resulted in values of 3.2, 4.5, and 6.2 MPa×m 1/2, respectively. The strengths were found to follow a Weibull distribution but their scaling was found to be controlled by different specimen size parameters. Therefore, a cross comparison of the strengths is not fully meaningful. We instead propose to compare their theoretical strengths as determined by employing Novozhilov fracture criterion. The estimated theoretical strength for SiC is 10.6GPa at a characteristic length of 58nm, for UNCD is 18.6GPa at a characteristic length of 37nm, and for ta-C is 25.4GPa at a characteristic length of 38nm. The techniques used to obtained these results as well as microscopic fractographic analyses are summarized in the article. We also highlight the importance of characterizing mechanical properties of MEMS materials by means of only one simple and accurate experimental technique.

More Details

A computational study of explosive hazard potential for reuseable launch vehicles

Collection of Technical Papers - AIAA Space 2005 Conference and Exposition

Freitas, Christopher J.; Chocron, Sidney; Palmer, Donald; Langley, Patrick; Kipp, Marlin E.; Saul, WVenner S.; Langston, Leo J.

Catastrophic failure of a Reusable Launch Vehicle (RLV) during launch poses a significant engineering problem in the context of crew escape. The explosive hazard potential of the RLV changes during the various phases of the launch. The hazard potential in the on-pad environment is characterized by release and formation of a gas phase mixture in an oxidizer rich environment, while the hazard during the in-flight phase is dominated by the boundary layer and wake flow formed around the vehicle and the interaction with the exhaust gas plume. In order to address more effectively crew escape in these explosive environments a computational analysis program was undertaken by Lockheed Martin, funded by NASA JSC, with simulations and analyses completed by Southwest Research Institute and Sandia National Laboratories. This paper presents then the details of the methodology used in this analysis, results of the study, and important conclusions that came out of the study. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

More Details

A gas-cooled-reactor closed-Brayton-cycle demonstration with nuclear heating

AIP Conference Proceedings

Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government. © 2005 American Institute of Physics.

More Details

Modal analysis for model validation in micro-fabricated devices

Conference Proceedings of the Society for Experimental Mechanics Series

Sumali, Hartono S.; Epp, David E.; Fulcher, Clay W.

Experimental modal analysis (EMA) was carried out on a micro-machined acceleration switch to characterize the motions of the device as fabricated and to compare this with analytical results for the nominal design. Finite element analysis (FEA) of the nominal design was used for this comparison. The acceleration switch was a single-crystal silicon disc supported by four fork-shaped springs. We shook the base of the die with step sine type excitation. A Laser Doppler Velocimeter (LDV) in conjunction with a microscope was used to measure the velocities of the die at several points. The desired first three modes of the structure were identified. The fundamental natural frequency that we measured in this experiment gives an estimate of the actuation g-level for the specified stroke. The fundamental resonance and actuation g-level results from the EMA and the FEA showed large variations. The discrepancy prompted thorough dimensional measurement of the acceleration switch, which revealed discrepancies between the nominal design and tested component.

More Details

On chain branching and its role in homogeneous ignition and premixed flame propagation

3rd M.I.T. Conference on Computational Fluid and Solid Mechanics

Lee, J.C.; Najm, H.N.; Lefantzi, S.; Ray, J.; Frenklach, M.; Valorani, M.; Goussis, D.A.

The role of chain branching in a chemical kinetic system was investigated by analyzing the eigenvalues of the system. We found that in the homogeneous ignition of the hydrogen/air and methane/air mixtures, the branching mechanism gives rise to explosive modes (eigenvalues with positive real parts) in the induction period as expected; however, in their respective premixed flames, we found none. Thus, their existence is not a necessary condition for the propagation of a premixed flame. © 2005 Elsevier Ltd.

More Details

Nonlinear response of a lap-type joint using a whole-interface model

Conference Proceedings of the Society for Experimental Mechanics Series

Segalman, Daniel J.; Holzmann, Wilfried A.

Structural assemblies often include bolted connections that are a primary mechanism for energy dissipation and nonlinear response at elevated load levels. Typically these connections are idealized within a structural dynamics finite element model as linear elastic springs. The spring stiffness is generally tuned to reproduce modal test data taken on a prototype. In conventional practice, modal test data is also used to estimate nominal values of modal damping that could be used in applications with load amplitudes comparable to those employed in the modal tests. Although this simplification of joint mechanics provides a convenient modeling approach with the advantages of reduced complexity and solution requirements, it often leads to poor predicted responses for load regimes associated with nonlinear system behavior. In this document we present an alternative approach using the concept of a "whole-joint" or "whole-interface" model [1]. We discuss the nature of the constitutive model, the manner in which model parameters are deduced, and comparison of structural dynamic prediction with results for experimental hardware subjected to a series of transient excitations beginning at low levels and increasing to levels that produced macro-slip in the joint. Further comparison is performed with a traditional "tuned" linear model. The ability of the whole-interface model to predict the onset of macro-slip as well as the vast improvement of the response levels in relation to those given by the linear model is made evident. Additionally, comparison between prediction and high amplitude experiments suggests areas for further work.

More Details

Quantifying uncertainty in an admittance model due to a test fixture

Conference Proceedings of the Society for Experimental Mechanics Series

Simmons, Leslie A.; Smith, Gregory E.; Mayes, Randall L.; Epp, David E.

This paper addresses the coupling of experimental and finite element models of substructures. In creating the experimental model, difficulties exist in applying moments and estimating resulting rotations at the connection point between the experimental and finite element models. In this work, a simple test fixture for applying moments and estimating rotations is used to more accurately estimate these quantities. The test fixture is analytically "subtracted" from the model using the admittance approach. Inherent in this process is the inversion of frequency response function matrices that can amplify the uncertainty in the measured data. Presented here is the work applied to a two-component beam model and analyses that attempt to identify and quantify some of these uncertainties. The admittance model of one beam component was generated experimentally using the moment-rotation fixture, and the other from a detailed finite element model. During analytical testing of the admittance modeling algorithm, it was discovered that the component admittance models generated by finite elements were ill conditioned due to the inherent physics.

More Details

An experimental procedure to validate a honeycomb structure

Conference Proceedings of the Society for Experimental Mechanics Series

Stasiunas, Eric C.; Carne, Thomas G.; Hinnerichs, Terry D.; Rogillio, Brendan R.

In order to create an analytical model of a material or structure, two sets of experiments must be performed-calibration and validation. Calibration experiments provide the analyst with the parameters from which to build a model that encompasses the behavior of the material. Once the model is calibrated, the new analytical results must be compared with a different, independent set of experiments, referred to as the validation experiments. This modeling procedure was performed for a crushable honeycomb material, with the validation experiments presented here. This paper covers the design of the validation experiments, the analysis of the resulting data, and the metric used for model validation.

More Details

Enhancing NIC performance for MPI using processing-in-memory

Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005

Rodrigues, Arun; Murphy, Richard; Brightwell, Ronald B.; Underwood, Keith D.

Processing-in-Memory (PIM) technology encompasses a range of research leveraging a tight coupling of memory and processing. The most unique features of the technology are extremely wide paths to memory, extremely low memory latency, and wide functional units. Many PIM researchers are also exploring extremely fine-grained multi-threading capabilities. This paper explores a mechanism for leveraging these features of PIM technology to enhance commodity architectures in a seemingly mundane way: accelerating MPI. Modern network interfaces leverage simple processors to offload portions of the MPI semantics, particularly the management of posted receive and unexpected message queues. Without adding cost or increasing clock frequency, using PIMs in the network interface can enhance performance. The results are a significant decrease in latency and increase in small message bandwidth, particularly when long queues are present.

More Details

Computational stability study of 3D flow in a differentially heated 8:1:1 cavity

3rd M.I.T. Conference on Computational Fluid and Solid Mechanics

Salinger, Andrew G.

The critical Rayleigh number Racr of the Hopf bifurcation that signals the limit of steady flows in a differentially heated 8:1:1 cavity is computed. The two-dimensional analog of this problem was the subject of a comprehensive set of benchmark calculations that included the estimation of Racr [1]. In this work we begin to answer the question of whether the 2D results carry over into 3D models. For the case of the 2D model being extruded for a depth of 1, and no-slip/no-penetration and adiabatic boundary conditions placed at these walls, the steady flow and destabilizing eigenvectors qualitatively match those from the 2D model. A mesh resolution study extending to a 20-million unknown model shows that the presence of these walls delays the first critical Rayleigh number from 3.06 × 105 to 5.13 × 105. © 2005 Elsevier Ltd.

More Details

Mimicking photosynthesis to make functional nanostructures and nanodevices

2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings

Shelnutt, John A.; Wang, Z.; Song, Y.; Medforth, Craig J.; Pereira, E.

The processes and functional constituents of biological photosynthetic systems can be mimicked to produce a variety of functional nanostructures and nanodevices. The photosynthetic nanostructures produced are analogs of the naturally occurring photosynthetic systems and are composed of biomimetic compounds (e.g., porphyrins). For example, photocatalytic nanotubes can be made by ionic self-assembly of two oppositely charged porphyrins tectons [1]. These nanotubes mimic the light-harvesting and photosynthetic functions of biological systems like the chlorosomal rods and reaction centers of green sulfur bacteria. In addition, metal-composite nanodevices can be made by using the photocatalytic activity of the nanotubes to reduce aqueous metal salts to metal atoms, which are subsequently deposited onto tube surfaces [2]. In another approach, spatial localization of photocatalytic porphyrins within templating surfactant assemblies leads to controlled growth of novel dendritic metal nanostructures [3].

More Details

Top-down vs. bottom-up uncertainty quantification for validation of a mechanical joint model

Conference Proceedings of the Society for Experimental Mechanics Series

Hasselman, Timothy; Wathugala, G.W.; Urbina, Angel; Paez, Thomas L.

Mechanical systems behave randomly and it is desirable to capture this feature when making response predictions. Currently, there is an effort to develop predictive mathematical models and test their validity through the assessment of their predictive accuracy relative to experimental results. Traditionally, the approach to quantify modeling uncertainty is to examine the uncertainty associated with each of the critical model parameters and to propagate this through the model to obtain an estimate of uncertainty in model predictions. This approach is referred to as the "bottom-up" approach. However, parametric uncertainty does not account for all sources of the differences between model predictions and experimental observations, such as model form uncertainty and experimental uncertainty due to the variability of test conditions, measurements and data processing. Uncertainty quantification (UQ) based directly on the differences between model predictions and experimental data is referred to as the "top-down" approach. This paper discusses both the top-down and bottom-up approaches and uses the respective stochastic models to assess the validity of a joint model with respect to experimental data not used to calibrate the model, i.e. random vibration versus sine test data. Practical examples based on joint modeling and testing performed by Sandia are presented and conclusions are drawn as to the pros and cons of each approach.

More Details

Dynamic modeling and control of nuclear reactors coupled to closed-loop brayton cycle systems using SIMULINK™

AIP Conference Proceedings

Wright, Steven A.; Sanchez, Travis

The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK™ (Simulink, 2004). SIMULINK™ is a development environment packaged with MatLab™ (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion components such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK™ models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK™ modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator). © 2005 American Institute of Physics.

More Details

Irregular buffer-zone partitioning reducing synchronization cost in SAMR

Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005

Steensland, Johan S.

Achieving good scalability for large simulations based on structured adaptive mesh refinement is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Domainbased partitioners serve as a foundation for techniques designed to improve the scalability and they have traditionally been designed on the basis of an independence assumption regarding the computational flow among grid patches at different refinement levels. But this assumption does not hold in practice. Hence the effectiveness of these techniques is significantly impaired. This paper introduces a partitioning method designed on the true premises. The method is tested for four different applications exhibiting different behaviors. The results show that synchronization costs on average can he reduced by 75 percent. The conclusion is that the method is suitable as a foundation in general hierarchical methods designed to improve the scalability of structured adaptive mesh refinement applications.

More Details

Operational results of a closed Brayton cycle test-loop

AIP Conference Proceedings

Wright, Steven A.; Fuller, Robert; Lipinski, Ronald J.; Nichols, Kenneth; Brown, Nicholas

A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of ∼1000 K. © 2005 American Institute of Physics.

More Details

Temperature distributions in LMR fuel pin bundles as modeled by COBRA-IV-I

AIP Conference Proceedings

Wright, Steven A.; Stout, Sherry

Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly. © 2005 American Institute of Physics.

More Details

Reversible logic for supercomputing

2005 Computing Frontiers Conference

DeBenedictis, Erik

This paper is about making reversible logic a reality for supercomputing. Reversible logic offers a way to exceed certain basic limits on the performance of computers, yet a powerful case will have to be made to justify its substantial development expense. This paper explores the limits of current, irreversible logic for supercomputers, thus forming a threshold above which reversible logic is the only solution. Problems above this threshold are discussed, with the science and mitigation of global warming being discussed in detail. To further develop the idea of using reversible logic in supercomputing, a design for a 1 Zettaflops supercomputer as required for addressing global climate warming is presented. However, to create such a design requires deviations from the mainstream of both the software for climate simulation and research directions of reversible logic. These deviations provide direction on how to make reversible logic practical. Copyright 2005 ACM.

More Details

Considering the relative importance of network performance and network features

Proceedings of the International Conference on Parallel Processing

Lawry, William L.; Underwood, Keith

Latency and bandwidth are usually considered to be the dominant factor in parallel application performance; however, recent studies have indicated that support for independent progress in MPI can also have a significant impact on application performance. This paper leverages the Cplant system at Sandia National Labs to compare a faster, vendor provided MPI library without independent progress to an internally developed MPI library that sacrifices some performance to provide independent progress. The results are surprising. Although some applications see significant negative impacts from the reduced network performance, others are more sensitive to the presence of independent progress. © 2005 IEEE.

More Details

Evaluation of Detached Eddy Simulation for turbulent wake applications

43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers

Barone, Matthew F.; Roy, Christopher J.

Simulations of a low-speed square cylinder wake and a supersonic axisymmetric base wake are performed using the Detached Eddy Simulation (DES) model. A reduced-dissipation form of the Symmetric TVD scheme is employed to mitigate the effects of dissipative error in regions of smooth flow. The reduced-dissipation scheme is demonstrated on a 2D square cylinder wake problem, showing a dramatic increase in accuracy for a given grid resolution. The results for simulations on three grids of increasing resolution for the 3D square cylinder wake are compared to experimental data and to other LES and DES studies. The comparisons of mean flow and global mean flow quantities to experimental data are favorable, while the results for second order statistics in the wake are mixed and do not always improve with increasing spatial resolution. Comparisons to LES studies are also generally favorable, suggesting DES provides an adequate subgrid scale model. Predictions of base drag and centerline wake velocity for the supersonic wake are also good, given sufficient grid refinement. These cases add to the validation library for DES and support its use as an engineering analysis tool for accurate prediction of global flow quantities and mean flow properties.

More Details

RF MEMS Reconfigurable triangular patch antenna

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Feldner, Lucas M.; Nordquist, Christopher N.; Christodoulou, Christos G.

A Ka-Band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques. Full-wave MoM simulation results will be compared to laboratory measurements in the oral presentation. © 2005 IEEE.

More Details

An analysis of the double-precision floating-point FFT on FPGAs

Proceedings - 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2005

Hemmert, Karl S.; Underwood, Keith

Advances in FPGA technology have led to dramatic improvements in double precision floating-point performance. Modern FPGAs boast several GigaFLOPs of raw computing power. Unfortunately, this computing power is distributed across 30 floating-point units with over 10 cycles of latency each. The user must find two orders of magnitude more parallelism than is typically exploited in a single microprocessor; thus, it is not clear that the computational power of FPGAs can be exploited across a wide range of algorithms. This paper explores three implementation alternatives for the Fast Fourier Transform (FFT) on FPGAs. The algorithms are compared in terms of sustained performance and memory requirements for various FFT sizes and FPGA sizes. The results indicate that FPGAs are competitive with microprocessors in terms of performance and that the "correct" FFT implementation varies based on the size of the transform and the size of the FPGA. © 2005 IEEE.

More Details

What's shakin', dude? Effective use of modal shakers

Conference Proceedings of the Society for Experimental Mechanics Series

Mayes, R.L.; Gomez, Anthony J.

In modal testing, the most popular tools for exciting a structure are hammers and shakers. This paper reviews the applications for which shakers have an advantage. In addition the advantages and disadvantages of different forcing inputs (e.g. sinusoidal, random, burst random and chirp) that can be applied with a shaker are noted. Special considerations are reported for the fixtures required for shaker testing (blocks, force gages, stingers) to obtain satisfactory results. Various problems that the author has encountered during single and multi-shaker modal tests are described with their solutions.

More Details

Perspectives on optimization under uncertainty: Algorithms and applications

Giunta, Anthony A.; Eldred, Michael S.; Swiler, Laura P.; Trucano, Timothy G.

This paper provides an overview of several approaches to formulating and solving optimization under uncertainty (OUU) engineering design problems. In addition, the topic of high-performance computing and OUU is addressed, with a discussion of the coarse- and fine-grained parallel computing opportunities in the various OUU problem formulations. The OUU approaches covered here are: sampling-based OUU, surrogate model-based OUU, analytic reliability-based OUU (also known as reliability-based design optimization), polynomial chaos-based OUU, and stochastic perturbation-based OUU.

More Details

A method for extending the size of Latin Hypercube Sample

Conference Proceedings of the Society for Experimental Mechanics Series

Sallaberry, Cedric J.; Helton, Jon C.

Latin Hypercube Sampling (LHS) is widely used as sampling based method for probabilistic calculations. This method has some clear advantages over classical random sampling (RS) that derive from its efficient stratification properties. However, one of its limitations is that it is not possible to extend the size of an initial sample by simply adding new simulations, as this will lead to a loss of the efficient stratification associated with LHS. We describe a new method to extend the size of an LHS to n (>=2) times its original size while preserving both the LHS structure and any induced correlations between the input parameters. This method involves introducing a refined grid for the original sample and then filling in empty rows and columns with new data in a way that conserves both the LHS structure and any induced correlations. An estimate of the bounds of the resulting correlation between two variables is derived for n=2. This result shows that the final correlation is close to the average of the correlations from the original sample and the new sample used in the infilling of the empty rows and columns indicated above.

More Details

A comparison of floating point and logarithmic number systems for FPGAs

Proceedings - 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2005

Haselman, Michael; Beauchamp, Michael; Wood, Aaron; Hauck, Scott; Underwood, Keith; Hemmert, Karl S.

There have been many papers proposing the use of logarithmic numbers (LNS) as an alternative to floating point because of simpler multiplication, division and exponentiation computations [1,4-9,13]. However, this advantage comes at the cost of complicated, inexact addition and subtraction, as well as the need to convert between the formats. In this work, we created a parameterized LNS library of computational units and compared them to an existing floating point library. Specifically, we considered multiplication, division, addition, subtraction, and format conversion to determine when one format should be used over the other and when it is advantageous to change formats during a calculation. © 2005 IEEE.

More Details

Integrated chemiresistor sensors with preconcentrators for monitoring volatile organic compounds in water

World Water Congress 2005: Impacts of Global Climate Change - Proceedings of the 2005 World Water and Environmental Resources Congress

Ho, Clifford K.; Wright, Jerome L.

Chemiresistor microsensors have been developed to provide continuous in-situ detection of volatile organic compounds (VOCs). The chemiresistor sensor is packaged in a rugged, waterproof housing that allows the device to detect VOCs in air, soil, and water. Preconcentrators are also being developed to enhance the sensitivity of the chemiresistor sensor. The "micro- hotplate" preconcentrator is placed face-to-face against the array of chemiresistors inside the package. At prescribed intervals, the preconcentrator is heated to desorb VOCs that have accumulated on the sorbent material on the one-micron-thick silicon-nitride membrane. The pulse of higher-than-ambient concentration of VOC vapor is then detected by the adjacent chemiresistors. The plume is allowed to diffuse out of the package through slots adjacent to the preconcentrator. The integrated chemiresistor/preconcentrator sensor has been tested in the laboratory to evaluate the impacts of sorbent materials, fabrication methods, and repeated heating cycles on the longevity and performance of the sensor. Calibration methods have also been developed, and field tests have been initiated. Copyright ASCE 2005.

More Details

Impact of sensor performance on protecting water distribution systems from contamination events

World Water Congress 2005: Impacts of Global Climate Change - Proceedings of the 2005 World Water and Environmental Resources Congress

Mckenna, Sean A.; Yarrington, Lane Y.

Real-time water quality and chemical-specific sensors are becoming more commonplace in water distribution systems. The overall objective of the sensor network is to protect consumers from accidental and malevolent contamination events occurring within the distribution network. This objective can be quantified several different ways including: minimizing the amount of contaminated water consumed, minimizing the extent of the contamination within the network, minimizing the time to detection, etc. We examine the ability of a sensor network to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately-sized network is used as an example and sensors are placed randomly. The source term is a passive injection into a node and the resulting concentration in the node is a function of the volumetric flow through that node. The concentration of the contaminant at the source node is averaged for all time steps during the injection period. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are evaluated. Results of this analysis allow the tradeoff between the necessary detection limit in a sensor and the number of sensors to be evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Copyright ASCE 2005.

More Details

Piloted methane/air jet flames: Transport effects and aspects of scalar structure

Combustion and Flame

Barlow, R.S.; Frank, J.H.; Karpetis, A.N.; Chen, J.Y.

Previously unpublished results from multiscalar point measurements in the series of piloted CH4/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Automated and integrated mask generation from a CAD constructed 3D model

2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings

Schiek, Richard L.; Schmidt, Rodney C.

We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micromachining. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology to the model. The 3D model is first separated into bodies that are non-intersecting, made from different materials or only linked through a ground plane. Next, for each body unique horizontal cross sections are located and arranged into a tree based on their topological relationship. A branch-wise search of the tree uncovers locations where deposition boundaries must lie and identifies candidate masks creating a generic mask set for the 3D model. Finally, in the last step specific process requirements are considered that may constrain the generic mask set.

More Details

The effect of ozone on the growth rate of tin oxide from monobutyltintrichloride

Proceedings - Electrochemical Society

Chae, Yongkee; Allendorf, Mark D.

The effects of ozone (O 3) on tin oxide growth rates from mixtures of monobutyltintrichloride (MBTC), O 2 and H 2O are reported. The results indicate that O 3 increases the growth rate under kinetically controlled conditions (MBTC + O 2, 25 torr), but under mass-transport-control (200 torr and/or addition of H 2O to the reactant gases), growth rates are either unaffected or decrease. Kinetic modeling of the gas-phase reactions suggests that O, H, and OH radicals react at the surface to increase the growth rate, but higher pressures reduce their concentrations via recombination. In addition, higher pressures result in increased concentrations of less reactive tin halides, which are decomposition products of MBTC. It appears that when H 2O is a reactant, these radicals reduce the concentration of the tin oxide precursor (thought to be an MBTC-H 2O complex), which significantly decreases the growth rate.

More Details

Discrete optimization of radiant heaters with simulated annealing

Proceedings of the ASME Summer Heat Transfer Conference

Porter, Jason M.; Larsen, Marvin E.; Howell, John R.

The simulated annealing algorithm is used to seek optimal radiant heater configurations that provide a desired distribution of incident radiant energy onto a surface. The problem is motivated by a need to create well-understood boundary conditions that simulate fire environments. A bank of halogen lamps irradiates the back of a thin black plate (called a shroud), which simulates the fire environment. For such fire simulations, shroud temperatures routinely exceed 1000°C and thermal radiation is the dominant mode of heat transfer. The test specimen is then heated by placing it in front of the shroud. The panel, accommodating the radiant heaters (lamps), provides equally spaced slots all of which are powered at the same voltage. Lamp positioning is crucial to obtaining a uniform temperature on the shroud, but determining the best positioning of the lamps experimentally through trial and error has proven difficult. The discrete optimization problem searches possible lamp configurations by simulating adding or removing lamps from the panel. Inverse heat transfer methods have been successfully applied to similar problems. Applying inverse heat transfer methods to this problem, the desired boundary conditions on the shroud are used to solve for the required heater settings. Two boundary conditions are needed: the temperature profile and the heat flux profile on the shroud. The heat flux profile is determined by calculating the radiation heat transfer between the shroud and the test object. However, because the heaters used in the design can only assume discrete positions and are all maintained at the same power level, traditional inverse methods fail. A discrete inverse radiation heat transfer solution method is needed. In this study, a simulated annealing optimization routine is used to determine optimal heater positions given desired boundary conditions on the shroud. Computational characteristics of simulated annealing are presented as well as results of the optimization. Copyright © 2005 by ASME.

More Details

A comparison of Navier Stokes and network models to predict chemical transport in municipal water distribution systems

World Water Congress 2005: Impacts of Global Climate Change - Proceedings of the 2005 World Water and Environmental Resources Congress

Van Bloemen Waanders, B.; Hammond, G.; Shadid, John N.; Collis, S.; Murray, R.

We investigate the accuracy of chemical transport in network models for small geometric configurations. Network model have successfully simulated the general operations of large water distribution systems. However, some of the simplifying assumptions associated with the implementation may cause inaccuracies if chemicals need to be carefully characterized at a high level of detail. In particular, we are interested in precise transport behavior so that inversion and control problems can be applied to water distribution networks. As an initial phase, Navier Stokes combined with a convection-diffusion formulation was used to characterize the mixing behavior at a pipe intersection in two dimensions. Our numerical models predict only on the order of 12-14 % of the chemical to be mixed with the other inlet pipe. Laboratory results show similar behavior and suggest that even if our numerical model is able to resolve turbulence, it may not improve the mixing behavior. This conclusion may not be appropriate however for other sets of operating conditions, and therefore we have started to develop a 3D implementation. Preliminary results for duct geometry are presented. © copyright ASCE 2005.

More Details

InfoStar: An adaptive visual analytics platform for mobile devices

Proceedings of the ACM/IEEE 2005 Supercomputing Conference, SC'05

Sanfilippo, Antonio; May, Richard; Danielson, Gary; Baddeley, Bob; Riensche, Rick; Kirby, Skip; Collins, Sharon; Thornton, Susan; Washington, Kenneth; Schrager, Matt; Vanrandwyk, Jamie V.; Borchers, Bob; Gatchell, Doug

We present the design and implementation of InfoStar, an adaptive visual analytics platform for mobile devices such as PDAs, laptops, Tablet PCs and mobile phones, InfoStar extends the reach of visual analytics technology beyond the traditional desktop paradigm to provide ubiquitous access to interactive visualizations of information spaces. These visualizations are critical in addressing the knowledge needs of human agents operating in the field, in areas as diverse as business, homeland security, law enforcement, protective services, emergency medical services and scientific discovery. We describe an initial real world deployment of this technology, in which the InfoStar platform has been used to offer mobile access to scheduling and venue information to conference attendees at Supercomputing 2004. © 2005 IEEE.

More Details

Candidate for solar power: A novel desalination technology for Coal Bed Methane produced water

Proceedings of the Solar World Congress 2005: Bringing Water to the World, Including Proceedings of 34th ASES Annual Conference and Proceedings of 30th National Passive Solar Conference

Sattler, Allan R.; Hanley, Charles J.; Hightower, Michael M.; Andelman, Marc

Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

More Details

Experimental techniques to isolate dynamic behavior of bolted connections

Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

Resor, Brian; Gregory, Danny L.; Coleman, Ronald G.

This paper discusses issues that arise in controlling high quality mechanical shock inputs for mock hardware in order to validate a model of a bolted connection. The dynamic response of some mechanical components is strongly dependent upon the behavior of their bolted connections. The bolted connections often provide the only structural load paths into the component and can be highly nonlinear. Accurate analytical modeling of bolted connections is critical to the prediction of component response to dynamic loadings. In particular, it is necessary to understand and correctly model the stiffness of the joint and the energy dissipation (damping) that is a nonlinear function of the forces acting on the joint. Frequency-rich shock inputs composed of several decayed sinusoid components were designed as model validation tests and applied to a test item using an electrodynamic shaker. The test item was designed to isolate the behavior of the joint of interest and responses were dependent on the properties of the joints. The nonlinear stiffness and damping properties of the test item under study presented a challenge in isolating behavior of t4he test hardware from the stiffness, damping and boundary conditions of the shaker. Techniques that yield data to provide a sound basis for model validation comparisons of the bolted joint model are described.

More Details

Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes

Polymer Degradation and Stability

Celina, M.; Gillen, K.T.; Assink, Roger A.

Lifetime prediction of polymeric materials often requires extrapolation of accelerated aging data with the suitability and confidence in such approaches being subject to ongoing discussions. This paper reviews the evidence of non-Arrhenius behaviour (curvature) instead of linear extrapolations in polymer degradation studies. Several studies have emphasized mechanistic variations in the degradation mechanism and demonstrated changes in activation energies but often data have not been fully quantified. To improve predictive capabilities a simple approach for dealing with curvature in Arrhenius plots is examined on a basis of two competing reactions. This allows for excellent fitting of experimental data as shown for some elastomers, does not require complex kinetic modelling, and individual activation energies are easily determined. Reviewing literature data for the thermal degradation of polypropylene a crossover temperature (temperature at which the two processes equally contribute) of ∼83 °C was determined, with the high temperature process having a considerably higher activation energy (107-156 kJ/mol) than the low temperature process (35-50 kJ/mol). Since low activation energy processes can dominate at low temperatures and longer extrapolations result in larger uncertainties in lifetime predictions, experiments focused on estimating Ea values at the lowest possible temperature instead of assuming straight line extrapolations will lead to more confident lifetime estimates. © 2005 Elsevier Ltd. All rights reserved.

More Details

170-kV laser-triggered water switch experiments

IEEE Transactions on Plasma Science

Woodworth, Joseph R.; Chalenski, D.; Sarkisov, G.S.; Blickem, J.R.

We report the results of experiments using a small Q-switched Nd:YAG laser at 532 and 1064 nm to trigger a 170-kV pulse-charged water switch. 1-σ jitters as low as ±1.7 ns were demonstrated; an order of magnitude improvement over the ±25-ns jitter of the switch in its self-breaking mode. At the optimum observed triggering wavelength of 532 nm, a 7-ns laser pulse gave better results than a 0.15-ns laser pulse. Time resolved optical diagnostics suggest a multistage triggering process in which the laser forms a string of point plasmas between the switch electrodes. These point plasmas expand, cool and merge, forming a vapor column between the electrodes that breaks down rapidly with low jitter. © 2005 IEEE.

More Details

Pore corrosion model for gold-plated copper contacts

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Sun, A.C.; Moffat, Harry K.; Enos, David E.; Glauner, C.S.

The research goal presented here is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10ppb H 2S at 30°C and a relative humidity of 70% This environment accelerates the attack normally observed in a light industrial environment (similar to, but less severe than, the Battelle class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the electrical resistance of a probe contact with the aged surface, as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to close the numerical model. Comparisons are made to the experimentally observed corrosion-bloom number density, bloom size distribution, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area and a probability for bloom-growth extinction proportional to the bloom volume, due to Kirkendall voiding. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms is heavily weighted by contributions from the halo region.

More Details

VisTrails: Enabling interactive multiple-view visualizations

Proceedings of the IEEE Visualization Conference

Bavoil, Louis; Callahan, Steven P.; Crossno, Patricia J.; Freire, Juliana; Scheidegger, Carlos E.; Silva, Cláudio T.; Vo, Huy T.

VisTrails is a new system that enables interactive multiple-view visualizations by simplifying the creation and maintenance of visualization pipelines, and by optimizing their execution. It provides a general infrastructure that can be combined with existing visualization systems and libraries. A key component of VisTrails is the visualization trail (vistrail), a formal specification of a pipeline. Unlike existing dataflow-based systems, in VisTrails there is a clear separation between the specification of a pipeline and its execution instances. This separation enables powerful scripting capabilities and provides a scalable mechanism for generating a large number of visualizations. VisTrails also leverages the vistrail specification to identify and avoid redundant operations. This optimization is especially useful while exploring multiple visualizations. When variations of the same pipeline need to be executed, substantial speedups can be obtained by caching the results of overlapping subsequences of the pipelines. In this paper, we describe the design and implementation of VisTrails, and show its effectiveness in different application scenarios. © 2005 IEEE.

More Details

Development and testing of an air breathing, membrane separated, enzyme anode fuel cell for glucose fuels

ACS Division of Fuel Chemistry, Preprints

Apblett, Christopher A.; Ingersoll, David I.; Roberts, Greg

In light of difficulties in realizing a carbohydrate fuel cell that can run on animal or plant carbohydrates, a study was carried out to fabricate a membrane separated, platinum cathode, enzyme anode fuel cell, and test it under both quiescent and flow through conditions. Mediator loss to the flowing solution was the largest contributor to power loss. Use of the phenazine derivative mediators offered decent open circuit potentials for half cell and full cell performance, but suffered from quick loss to the solution which hampered long term operation. A means to stabilize the phenazine molecules to the electrode would need to be developed to extend the lifetime of the cell beyond its current level of a few hours. This is an abstract of a paper presented ACS Fuel Chemistry Meeting (Washington, DC Fall 2005).

More Details

Performance and design study of a directional scintillating fiber detector for 14-MeV neutrons using GEANT

Proceedings of SPIE - The International Society for Optical Engineering

Mengesha, W.; Mascarenhas, Nicholas M.; Peel, J.; Sunnarborg, Duane A.

A directional scintillating fiber detector for 14-MeV neutrons was simulated using the GEANT4 Monte Carlo simulation tool. Detail design aspects of a prototype 14 MeV neutron fiber detector under development were used in the simulation to assess performance and design features of the detector. Saint-Gobain produced, BCF-12, plastic fiber material was used in the prototype development. The fiber consists of a core scintillating material of polystyrene with 0.48 mm × 0.48 mm dimension and an acrylic outer cladding of 0.02 mm thickness. A total of 64 square fibers, each with a cross-sectional area of 0.25 mm 2 and length of 100 mm were positioned parallel to each other with a spacing of 2.3 mm (fiber pitch) in the tracking of 14-MeV neutron induced recoil proton (n-p) events. Neutron induced recoil proton events, resulting energy deposition in two collinear fibers, were used in reconstructing a two dimensional (2D) direction of incident neutrons. Blurring of recoil protons signal in measurements was also considered to account uncertainty in direction reconstruction. Reconstructed direction has a limiting angular resolution of 3° due to fiber dimension. Blurring the recoil proton energy resulted in further broadening of the reconstructed direction and the angular resolution was 20°. These values were determined when incident neutron beam makes an angle of 45 degree relative to the front surface of the detector. Comparable values were obtained at other angles of incidence. Results from the present simulation have demonstrated promising directional sensitivity of the scintillating fiber detector under development.

More Details

Thermal interface materials advancements for "beating the heat" in microelectronics

International SAMPE Symposium and Exhibition (Proceedings)

Emerson, John A.; Galloway, Jeffrey A.; Rae, David F.; Rightley, Michael J.

As electronic assemblies become more compact and with increased processing bandwidth, the escalating thermal energy has become more difficult to manage. The major limitation has been nonmetallic joining using poor thermal interface materials (TIM). The interfacial, versus bulk, thermal conductivity of an adhesive is the major loss mechanism and normally accounts for an order magnitude loss in conductivity per equivalent thickness. The next generation TIM requires a sophisticated understanding of material and surface sciences, heat transport at sub-micron scales and the manufacturing processes used in packaging of microelectronics and other target applications. Only when this relationship between bondline manufacturing processes, structure and contact resistance is well understood on a fundamental level, would it be possible to advance the development of miniaturized microsystems. We give the status of the study of thermal transport across these interfaces.

More Details

Current profiles during VAR of Ti-6Al-4V

LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting

Williamson, R.L.; Shelmidine, G.J.; Maroone, J.P.

Voltage and temperature distributions along the crucible were measured during VAR of 0.81 m diameter Ti-6Al-4V electrode into 0.91 m diameter ingot. These data were used to determine the current distribution along the crucible. Measurements were made for two furnace conditions, one with a bare crucible and the other with a painted crucible. The VAR furnace used for these measurements is of the non-coaxial type, i.e. current is fed directly into the bottom of the crucible through a stool (base plate) contact and exits the furnace through the electrode stinger. The data show that approximately 63% of the current is conducted directly between the ingot and electrode with the remaining conducted between the electrode and crucible wall. This partitioning does not appear to be sensitive to crucible coating. The crucible voltage data were successfully simulated using uniform current distributions for the current conduction zones, a value of 0.63 for the partitioning, and widths of 0.30 and 0.15 m for the ingot/crucible wall and plasma conduction zones, respectively. Successful simulation of the voltage data becomes increasingly difficult (or impossible) as one uses current partitioning values increasingly different from 0.63, indicating that the experimental value is consistent with theory. Current conducted between the ingot and crucible wall through the ingot/wall contact zone may vary during the process without affecting overall current partitioning. The same is true for current conducted through the ingot/stool and stool/crucible contact zones. There is some evidence that the ingot/stool current decreases with increasing ingot length for the case of the bare crucible. Equivalent circuit analysis shows that, under normal conditions, current partitioning is only sensitive to the ratio of the plasma resistance across the annulus to the plasma resistance across the electrode gap, thereby demonstrating the relationship between current partitioning and gap.

More Details

Comparison of simulation and experiment for soot concentration in a 2m diameter JP-8 fire

Proceedings of the ASME Summer Heat Transfer Conference

Tieszen, Sheldon R.

A comparison is made between numerical simulations and experimental data for soot and water vapor concentration in a JP-8 fire. Soot concentration depends on soot generated/destroyed per unit flame area (subgrid soot model) and the overall flame area per unit volume (turbulence treatment). Two different turbulence treatments, a steady RANS variant and an unsteady LES variant, are used to determine the effect of overall flame area per unit volume. The results indicate that the difference in the two turbulence treatments is greater than the difference between the data and either approach. Copyright © 2005 by ASME.

More Details

Microstructures of inertia friction welds in Fe-Ni-Cr ternary alloys

ASM Proceedings of the International Conference: Trends in Welding Research

Puskar, J.D.; Brooks, J.A.; Yang, N.

Studies were conducted to determine what relationships may exist between alloy compositions and inertia friction weld microstructures of austenitic stainless steels. Ternary alloys of iron, nickel and chromium with 60-70% Fe and a range in Cr/Ni ratios from 0.34 to 1.9 were investigated. It was found that although grain size and compositional banding were reduced and varied with radial position and weld parameters, no significant solid-state transformation between ferrite and austenite was detected. Ferrite stringers in base materials with high ferrite content were elongated and fragmented, while in base materials with small amounts of ferrite stringers the ferrite dissolved. These findings may vary for different sample geometries and weld schedules. Copyright © 2006 ASM International®.

More Details

The effects of processing parameters on the microstructural evolution and mechanical properties of inertia friction welded 21Cr-6Ni-9Mn

ASM Proceedings of the International Conference: Trends in Welding Research

Puskar, J.D.; Michael, Joseph R.; Somerday, Brian P.; Balch, Dorian K.; Brooks, J.A.; Cadden, C.H.

Tubular specimens of the nitrogen-strengthened alloy 21Cr-6Ni-9Mn were instrumented with thermocouples and inertia welded using a wide range of axial forces and kinetic energies. It was determined that a linear relationship exists between upset and kinetic energy for a given axial force. Furthermore, the peak temperatures are inversely related to the applied axial force. Microstructural characterization was performed using optical and electron microscopy techniques. Ferrite was observed locally at the weld interface, and it was determined that the width of the ferrite zone could vary widely depending on the process parameters. Electron backscattered diffraction analysis revealed that the ferrite and austenite at the weld interface exhibit the Kurdjumov-Sachs orientation relationship, and suggests that a very large amount of ferrite is present during the welding process that subsequently transforms to austenite during cooling. The fracture toughness of inertia welds thermally charged in gaseous hydrogen was also measured. It was found that the hydrogen-assisted fracture susceptibility of the inertia welds was greater than that of the base metal, but less than that of 21Cr-6Ni-9Mn gas tungsten arc welds. Copyright © 2006 ASM International®.

More Details

The effects of surface contamination on resistance degradation of hot-switched low-force MEMS electrical contacts

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Dickrell, Daniel J.; Dugger, Michael T.

This work investigated the relationship between the resistance degradation in low-force metal contacts and hot-switched operational conditions representative of MEMS devices. A modified nano-indentation apparatus was used to bring electrically-biased gold and platinum surfaces into contact at a load of 100 μN. The applied normal force and electrical contact resistance of the contact materials was measured simultaneously. The influence of parallel discharge paths for stored electrical energy in the contact circuit is discussed in relation to surface contamination decomposition and the observed resistance degradation.

More Details

Thin plate gap bridging study for Nd:YAG pulsed laser lap welds

ASM Proceedings of the International Conference: Trends in Welding Research

Norris, J.T.; Roach, R.A.; Fuerschbach, Phillip W.; Bernal, J.

Gap bridging of thin plate pulsed Nd:YAG lap welds is optimized by focused welding at low peak powers without gas shielding. High speed images reveal effects of varying welding parameters and weld pool and laser beam interactions. Improved bridging with out gas shielding is attributed to changes in Marangoni convective flow. Development and verification of finite element models for weld pool physics is being conducted. Copyright © 2006 ASM International®.

More Details

Test results of a schott HCE using A LS-2 collector

International Solar Energy Conference

Moss, Timothy A.; Brosseau, Douglas A.

Sandia National Laboratories has completed thermal performance testing on the Schott parabolic trough receiver using the LS-2 collector on the Sandia rotating platform at the National Solar Thermal Test Facility in Albuquerque, NM. This testing was funded as part of the US DOE Sun-Lab USA-Trough program. The receiver tested was a new Schott receiver, known as Heat Collector Elements (HCEs). Schott is a new manufacturer of trough HCEs. The Schott HCEs are 4m long; therefore, two were joined and mounted on the LS-2 collector module for the test. The Schott HCE design consists of a 70mm diameter high solar absorptance coated stainless steel (SS) tube encapsulated within a 125mm diameter Pyrex® glass tube with vacuum in the annulus formed between the SS and glass tube to minimize convection heat losses. The Schott HCE design is unique in two regards. First, the bellows used to compensate for the difference in thermal expansion between the metal and glass tube are inside the glass envelope rather than outside. Second, the composition of materials at the glass-to-metal seal has very similar thermal expansion coefficients making the joint less prone to breakage from thermal shock. Sandia National Laboratories provided both the azimuth and elevation collector module tracking systems used during the tests. The test results showed the efficiency of the Schott HCE to be very similar to current HCEs being manufactured by Solel. This testing provided performance verification for the use of Schott tubes with Solargenix trough collector assemblies at currently planned trough power plant projects in Arizona and Nevada. Copyright © 2005 by ASME.

More Details

Native american sustainable energy systems - Navajo solar electric case study

Proceedings of the Solar World Congress 2005: Bringing Water to the World, Including Proceedings of 34th ASES Annual Conference and Proceedings of 30th National Passive Solar Conference

Begay-Campbell, Sandra; Coots, Jennifer; Mar, Benjamin

Sandia National Laboratories (Sandia) has an active relationship with the Navajo Nation. Sandia has grown this relationship with through joint formation of strategic multiyear plans oriented toward the development of sustainable Native American renewable energy projects and associated business development. For the last decade, the Navajo Tribal Utility Authority (NTUA) has installed stand-alone photovoltaic (PV) systems on the Navajo Reservation to provide some of its most remote customers with electricity. Sandia and New Mexico State University - Southwest Technology Development Institute's technical assistance supports NTUA as a leader in rural solar electrification, assists NTUA's solar program coordinator to create a sustainable program and conveys NTUA's success in solar to others, including the Department of Energy (DOE). In partnership with DOE's Tribal Energy Program, summer interns' Jennifer Coots (MBA student) and Benjamin Mar (Electrical and Computer Engineering student) prepared case studies that summarize the rural utility's experience with solar electric power.

More Details

Noncontinuum gas-phase heat transfer from a heated microbeam to the adjacent substrate

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Gallis, Michail A.; Torczynski, J.R.; Rader, Daniel J.; Bainbridge, Bruce L.

Noncontinuum gas-phase heat transfer in two microscale geometries is investigated using two computational methods. The motivation is microscale thermal actuation produced by heating-induced expansion of a near-substrate microbeam in air. The first geometry involves a 1-μm microgap filled with gas and bounded by parallel solid slabs. The second geometry involves a heated I-shaped microbeam 2 μm from the adjacent substrate, with gas in between. Two computational methods are applied. The Navier-Stokes slip-jump (NSSJ) method uses continuum heat transfer in the gas, with temperature jumps at boundaries to treat noncontinuum effects. The Direct Simulation Monte Carlo (DSMC) method uses computational molecules to simulate noncontinuum gas behavior accurately. For the microgap, the heat-flux values from both methods are in good agreement for all pressures and accommodation coefficients. For the microbeam, there is comparably good agreement except for cases with low pressures and near-unity accommodation coefficients. The causes of this discrepancy are discussed. Copyright © 2005 by ASME.

More Details

Effect of processing parameters on temperature profiles, fluid flow, and pool shape in the ESR process

LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting

Viswanathan, Srinath; Melgaard, David K.; Patel, Ashish D.; Evans, David G.

A numerical model of the ESR process was used to study the effect of the various process parameters on the resulting temperature profiles, flow field, and pool shapes. The computational domain included the slag and ingot, while the electrode, crucible, and cooling water were considered as external boundary conditions. The model considered heat transfer, fluid flow, solidification, and electromagnetic effects. The predicted pool profiles were compared with experimental results obtained over a range of processing parameters from an industrial-scale 718 alloy ingot. The shape of the melt pool was marked by dropping nickel balls down the annulus of the crucible during melting. Thermocouples placed in the electrode monitored the electrode and slag temperature as melting progressed. The cooling water temperature and flow rate were also monitored. The resulting ingots were sectioned and etched to reveal the ingot macrostructure and the shape of the melt pool. Comparisons of the predicted and experimentally measured pool profiles show excellent agreement. The effect of processing parameters, including the slag cap thickness, on the temperature distribution and flow field are discussed. The results of a sensitivity study of thermophysical properties of the slag are also discussed.

More Details

Raman thermometry of an electro-thermal microactuator

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Kearney, Sean P.; Phinney, Leslie M.; Baker, Michael S.

Experimentally measured temperature profiles along the micron-scale beam of a working thermal actuator are reported for the first time. Using a surface Raman scattering technique, temperature measurements are obtained in a noncontact fashion with submicron spatial resolution and to within an uncertainty of better than ± 10 K. The experimental data are used to validate computational predictions of the actuator thermal performance with reasonable agreement between the data and predicted temperatures. Copyright © 2005 by ASME.

More Details

An experimental procedure to validate a 2D plane stress buttress thread loaded in tension

Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics

Rogillio, Brendan R.; Sanders, Jessica D.

The structural characteristics of buttress thread mechanical joints are not well understood and are difficult to accurately model. As an initial step towards understanding the mechanics of the buttress thread, a 2D plane stress model was created. An experimental investigation was conducted to study the compliance, damping characteristics, and stress field in an axial test condition. The compliance and damping were determined experimentally from a steel cross section of a buttress thread. The stress field was visualized using photoelastic techniques. The mechanics study combined with the photoelastic study provided a set of validation data.

More Details

Development of a high sensitivity three-axis force/torque sensor for microassembly

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Rose, Scott E.; Jones, James F.; Enikov, Eniko T.

There is a growing need for multi-axis force torque (F/T) sensors to aid in the assembly of micro-scale devices. Many current generation robotic microassembly systems lack the force-feedback needed to facilitate automating common assembly tasks, such as peg-in-hole insertions. Currently, most microassembly operations use vision systems to align components being assembled. However, it is difficult to view high aspect ratio component assemblies under high magnification due to the resulting limited depth-of-field. In addition, this difficulty is compounded as assembly tolerances approach dimensions resolvable with optics or if the mating parts are delicate. This paper describes the development of a high sensitivity F/T sensor. Optimal design theory was applied to determine the configuration that would result in the most sensitive and accurate sensor: Calibration experiments demonstrated that the sensor can resolve down to 200μN and possibly less. Copyright © 2005 by ASME.

More Details

Actuated tweezers for precision microassembly

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Bailar, James M.; Kast, Brian A.; Jones, James F.

Sandia National Laboratories is exploring assembling micro, meso, and miniature scale parts into a variety of tiny devices. These devices are comprised of parts ranging from tens of microns to a few millimeters in size. In support of this activity, a rapid prototyping assembly workstation that enables an operator to assemble three-dimensional devices with a minimum of fixturing has been developed. This workstation consists of precision robotics, stages, cameras, and sensors integrated in a way that facilitates human interaction. Although many of the workstation components are commercially available, no inexpensive and durable grippers of suitably large range of motion could be found. This paper describes the design and testing of a novel micro gripper based on precision tweezers and actuated with a micro servo that has proven extremely useful for the operator directed assembly of micro scale devices. Copyright © 2005 by ASME.

More Details

Microwelding using a modified SEM

ASM Proceedings of the International Conference: Trends in Welding Research

MacCallum, D.; Knorovsky, Gerald A.; Nowak-Neely, B.

Micro-scale welding has been successfully demonstrated using a Scanning Electron Microscope-based Electron Beam Welding (μEBW) technique. Modifications to a standard SEM to increase beam power, beam diagnostics, and Monte Carlo simulations of energy deposition are used to discuss how the technique may be used in practice. In particular, beam-material sub-surface interaction volumes and energy source location tailoring effects will be discussed. Additional desirable enhancements for the future will be noted. Copyright © 2006 ASM International®.

More Details

Fiber Bragg gratings for distributed temperature sensing in geothermal wells: Potential pitfalls

Transactions - Geothermal Resources Council

Weiss, Jonathan D.

In this paper, we discuss the primary characteristics and pitfalls associated with the use of Bragg Gratings for distributed temperature sensing, with particular attention to time-division multiplexing (TDM). Two pitfalls are intrinsic to a serial array of such gratings that use TDM: spectral shadowing and crosstalk. Two others involve strain in the fiber that masquerades as temperature and that could affect other methods of interrogating the gratings, in addition to TDM.

More Details

VAR pool depth measurement and simulation for a large diameter Ti-6Al-4V ingot

LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting

Minisandram, Ramesh S.; Arnold, Matthew J.; Williamson, Rodney L.

During VAR of a 5377 kg, 0.76 m diameter Ti-6Al-4V alloy electrode into 0.86 m diameter ingot, tantalum balls were dropped into the ingot pool to measure the centerline pool depth. The first was introduced at full power after 1134 kg of electrode had been melted. A second marker was dropped after 4288 kg of electrode had been consumed, also at full power but just prior to power cutback. The third, and final, ball was released at the end of the cutback with 286 kg of electrode remaining. An external solenoidal stirring field was applied to the ingot throughout the melting process, as is typical in such practices. The ingot was sectioned, the marker ball positions recorded, and the pool depths subsequently calculated. The first market was located only 4.5 cm from the bottom of the ingot, but was off-center by nearly 22 cm, indicating a relatively flat pool bottom. The other two balls were located 36.2 cm and 105.4 cm from the bottom, both approximately centered. Pool depths for the three conditions were calculated to be ∼41 cm, ∼131 cm and ∼99 cm. BAR, a 21/2 D, axisymmetric ingot code developed at Sandia National Laboratories, was used to generate pool shapes corresponding to these conditions. The code, which solves heat transfer, fluid flow and electromagnetic effects in a coupled fashion, was able to match the pool depths by adjusting the strength of the stirring field as a parameter, and predicted relatively thin sidewalls under full power melting, a prediction supported by crucible temperature and current distribution data also collected during the test. The applied stirring field was 60 gauss for this test. The effective field strength setting in BAR required to match the pool depths was 30 gauss. All other parameters in BAR were set identical to those required to match low stirring field (4 gauss), full power ingot pool depths measured and reported in an earlier study, except those requiring consistency with observed arc behavior in the two cases. Thus, it is concluded that the 21/2 D code can accurately match pool depths under high field strength stirring conditions once properly benchmarked.

More Details

Numerical modeling of finite-size plasmon structures with enhanced optical transmission using EIGER

ICEAA 2005 - 9th International Conference on Electromagnetics in Advanced Applications and EESC 2005 - 11th European Electromagnetic Structures Conference

Basilio, L.I.; Johnson, William Arthur.; Jackson, D.R.; Wilton, D.R.

Simulation results demonstrating transmission enhancement through a sub-wavelength aperature in an infinite plasmon array are presented. The results are obtained using EIGER and are considered preliminary before proceeding to the simulation of finite-plasmon arrays.

More Details

Modeling spray impingement using linear stability theories for droplet shattering

41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

Yoon, Sam S.; Desjardin, Paul E.

This paper compares several linear-theory-based models for droplet shattering employed for simulations of spray impingement on flat wall surface or a circular cylinder. Numerical simulations are conducted using a stochastic separated flow (SSF) technique that includes sub-models for droplet dynamics and impact. Results for spray impingement over a flat wall indicate that the linear theory applicable for a single droplet impact over-predicts the number of satellite (or secondary) droplets upon shattering when compared to experimental data. The causes for the observed discrepancies are discussed. Numerical simulation results for spray impingement over for a circular cylinder in cross flow are obtained and discussed. © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

More Details

Computation of grain boundary stiffness and mobility from boundary fluctuations

Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005

Foiles, Stephen M.; Hoyt, Jeffrey J.

Grain boundary stiffness and mobility determine the kinetics of curvature driven grain growth. Here the stiffness and mobility are determined using a computational approach based on the analysis of fluctuations in the grain boundary position during molecular dynamics simulations. This work represents the first determination of grain boundary stiffness. The results indicate that the boundary stiffness for a given boundary plane has a strong dependence on the direction of the boundary distortion. The mobility deduced is in accord with previous computer simulation studies.

More Details

A proportional hazards neural network for performing reliability estimates and risk prognostics for mobile systems subject to stochastic covariates

Engineering/Technology Management 2005: Safety Engineering and Risk Analysis, Technology and Society, Engineering Business Management, Health and Safety

Lloyd, George M.; Hasselman, Timothy; Paez, Thomas

We present a proportional hazards model (PHM) that establishes a framework suitable for performing reliability estimates and risk prognostics on complex multi-component systems which are transferred at arbitrary times among a discrete set of non-stationary stochastic environments. Such a scenario is not at all uncommon for portable and mobile systems. It is assumed that survival data, possibly interval censored, is available at several "typical" environments. This collection of empirical survival data forms the foundation upon which the basic effects of selected covariates are incorporated via the proportional hazards model. Proportional hazards models are well known in medical statistics, and can provide a variety of data-driven risk models which effectively capture the effects of the covariates. The paper describes three modifications we have found most suitable for this class of systems: development of suitable survival estimators that function well under realistic censoring scenarios, our modifications to the PHM which accommodate time-varying stochastic covariates, and implementation of said model in a non-linear network context which is itself model-free. Our baseline hazard is a parameterized reliability model developed from the empirical reliability estimates. Development of the risk score for arbitrary covariates arising from movement among different random environments is through interaction of the non-linear network and training data obtained from a Markov chain simulation based on stochastic environmental responses generated from Karhunen-Loève models. Copyright © 2005 by ASME.

More Details

Effects of particle energy on proton-induced single-event latchup

IEEE Transactions on Nuclear Science

Schwank, James R.; Shaneyfelt, Marty R.; Baggio, J.; Dodd, Paul E.; Felix, James A.; Ferlet-Cavrois, V.; Paillet, P.; Lambert, D.; Sexton, Frederick W.; Hash, Gerald L.; Blackmore, E.

The effect of proton energy on single-event latchup (SEL) in present-day SRAMs is investigated over a wide range of proton energies and temperature. SRAMs from five different vendors were irradiated at proton energies from 20 to 500 MeV and at temperatures of 25° and 85°C. For the SRAMs and radiation conditions examined in this work, proton energy SEL thresholds varied from as low as 20 MeV to as high as 490 MeV. To gain insight into the observed effects, the heavy-ion SEL linear energy transfer (LET) thresholds of the SRAMs were measured and compared to high-energy transport calculations of proton interactions with different materials. For some SRAMs that showed proton-induced SEL, the heavy-ion SEL threshold LET was as high as 25 MeV-cm 2/mg. Proton interactions with Si cannot generate nuclear recoils with LETs this large. Our nuclear scattering calculations suggest that the nuclear recoils are generated by proton interactions with tungsten. Tungsten plugs are commonly used in most high-density ICs fabricated today, including SRAMs. These results demonstrate that for system applications where latchups cannot be tolerated, SEL hardness assurance testing should be performed at a proton energy at least as high as the highest proton energy present in the system environment. Moreover, the best procedure to ensure that ICs will be latchup free in proton environments may be to use a heavy-ion source with LETs ≥40 MeV-cm 2/mg. © 2005 IEEE.

More Details

Effect of O2/CO2-firing on coal particle ignition

22nd Annual International Pittsburgh Coal Conference 2005, PCC 2005

MOLINA OCHOA, Alejandro N.; Shaddix, Christopher R.

Oxygen-enhanced and oxygen-fired pulverized coal combustion is actively being investigated, to achieve emission reductions and reduction in flue gas cleanup costs, as well as for coal-bed methane and enhanced oil recovery applications. To fully understand the results of pilot-scale tests and to accurately predict scale-up performance through CFD modeling, fundamental data are needed concerning coal char combustion under these conditions. In the work reported here, the effect of enhanced oxygen levels and CO2 bath gas are independently analyzed for their influence on a single-particle pulverized coal ignition of a U.S. bituminous coal and its char. The experiments show that the presence of CO2 and a lower O2 concentration increase the ignition delay time of both coal and char particles. The char particle results are explained by the difference in the mass diffusivity of CO 2 and N2, whereas the coal particle results require further analysis. © (2005) by the International Pittsburgh Coal Conference.

More Details

A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch

IEEE/LEOS Optical MEMS 2005: International Conference on Optical MEMS and Their Applications

Nielson, Gregory N.; Barbastathis, George

A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch. ©2005 IEEE.

More Details

Effects of lighting on performance of CMM video probes

Proceedings of the 20th Annual ASPE Meeting, ASPE 2005

Tran, Hy D.; Claudet, Andre C.

CMMs equipped with non-contact probes, such as video probes, are becoming popular for a variety of 2-D or 2.5-D objects. The advantages of a video (or vision) probe include the ability to measure features which are either too small or too delicate for a touch probe. Unfortunately, vision-based probing systems do not have the same measurement accuracy as touch probe equipped machines. For example, a Moore M48 coordinate measurement machine has an expected measurement uncertainty of 0.2 μm (plus a scale dependent term) when using a touch probe (the actual repeatability is on the order of 0.03 μm). When the probe is changed to a Leitz LS1 vision system, the expected measurement uncertainty is 1.2 μm plus a scale dependent term. The decreased accuracy is due entirely to the change in probing method. Components of the error budget include environmental effects, choice of lighting, lens distortions, and stage 2-D accuracy. Lighting is a major contributor to the measurement error budget, especially when a bidirectional measurement needs to be made (for example, the width of a line, rather than the center location of a line). We report on the effect of the sensitivity of vision probing on an OGP Avant Apex 200 to different lighting conditions, both for unidirectional and bidirectional measurements.

More Details

Design of a piezoresistive surface micromachined three-axis force transducer for microassembly

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Roman, Gustavo A.; Bronson, Jessica R.; Wiens, Gloria J.; Jones, James F.; Allen, James J.

One of the challenges facing microrobotic manufacturing is the ability to sense interactions for force-guided assembly of small devices. There is a need for a force transducer with the ability to sense forces in multiple degrees-of-freedom in the mN range with resolution on the order of 10 μN for microassembly applications. This paper presents theoretical studies for developing a surface micromachined piezoresistive force transducer that can measure normal force in the z-direction and moments about the x and y-axes. The devices proposed here are based on a compliant platform design with integrated piezoresistive sensing elements fabricated in a modified SUMMiT process. Various configurations and sensor element layouts are explored to determine the relationship of the applied forces and moments experienced during assembly and the corresponding strain. Structural and finite element analysis is used to determine the elastic response of the device and establish the best locations and orientations of the sensing elements to effectively utilize the piezoresistive effect of the polysilicon sensors. Initial experiments show the polysilicon piezoresistors to have a gauge factor of approximately 25. The expected sensitivities for these devices are presented. Copyright © 2005 by ASME.

More Details

Wheeled hopping mobility

Proceedings of SPIE - The International Society for Optical Engineering

Fischer, Gary J.

Sandia National Laboratories has developed a mesoscale wheeled hopping vehicle (WHV) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating obstacles in the vertical dimension and rough terrain that are prohibitive for other small ground base vehicles.

More Details

Instrumentation development for real time brainwave monitoring

Anderson, Lawrence F.; Clough, Benjamin W.

The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could capture, analyze, and communicate information on brain activity which could be of use to the individual, medical personnel or in other potential arenas. To take this option one step further, one might foresee that the signal would be captured, analyzed, and communicated to a person or device and which would result an action or reaction by that person or device. It is envisioned that ultimately a system would include a sensor detection mechanism, transmitter, receiver, microprocessor and associated memory, and audio and/or visual alert system. If successful in prototyping, the device could be considered for eventual implementation in ASIC form or as a fully integrated CMOS microsystem.

More Details

Ultra-cold molecule production

Chandler, D.W.; Rahn, Larry A.; Strecker, Kevin S.

The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

More Details

Fabrications of PVDF gratings :final report for LDRD project 79884

Carr, Dustin W.; Bogart, Gregory R.

The purpose of this project was to do some preliminary studies and process development on electroactive polymers to be used for tunable optical elements and MEMS actuators. Working in collaboration between Sandia National Labs and The University of Illinois Urbana-Champaign, we have successfully developed a process for applying thin films of poly (vinylidene fluoride) (PVDF) onto glass substrates and patterning these using a novel stamping technique. We observed actuation in these structures in static and dynamic measurements. Further work is needed to characterize the impact that this approach could have on the field of tunable optical devices for sensing and communication.

More Details

Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

More Details

Sandia national laboratories' tailored approach for training & qualification of nuclear criticality safety engineer personnel

2005 NCSD Topical Meeting (American Nuclear Society Nuclear Criticality Safety Division)

Knief, Ronald A.; Schwers, Norman F.; Dorsey, Daniel J.; Gregson, Michael W.

Sandia National Laboratories (SNL) has limited inventories of, and activities with, fissile-material. Personnel who perform nuclear criticality safety (NCS) assignments do so on a part-time basis. Sandia's "tailored approach" to training and qualification of these personnel can serve as a model for others with "small" NCS programs. SNL uses a single set of qualification cards for qualifying nuclear criticality safety engineers (NCSE). Provision is made for: (1) training and mentoring of new NCSE with testing or other verification of their skills and knowledge and (2) "qualification by documentation" for staff who historically have been performing NCSE-like duties. Key areas for evaluation include previous formal education and training; demonstrated success in writing Criticality Safety Assessments (CSA) and related documents; interaction with the SNL criticality safety committees; and overall knowledge (e.g., as judged against the objectives in DOE-STD-1135). Gaps of knowledge are filled through self-study, training, or mentoring. Candidate mastery of topics is confirmed primarily by evaluation of work products and interviews. Completion is approved by the Criticality Safety Officer (CSO) - the closest SNL comes to having an NCS manager - and then management. In applying the tailored approach, NCSE candidates are not required to be subject-matter experts for all NCS-related facilities and activities at SNL at the time of qualification. Familiarity with each of the facilities and activities is expected, along with the ability to "self-train" when needed (e.g., analogous just-in-time [JIT] procurement). The latter is supported by identification of applicable SNL-wide fissile-material facilities and activities along with resource organizations and personnel in NCS, safety analysis, accountability, etc. The capstone is a discussion with the CSO, or other experienced NCSE, demonstrating the ability to explain in some detail how a specific NCS assignment would be tackled (e.g., options for gaining facility/activity knowledge, performing analyses, using resource personnel, and traversing the required peer- and committee-review processes).

More Details

Red Storm usage model :Version 1.12

Jefferson, Karen L.; Sturtevant, Judy E.

Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

More Details

Laser triggering of water switches in terrawatt-class pulse power accelerators

Woodworth, Joseph R.; Zameroski, Nathan D.

Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

More Details

Advanced microscopy :time-resolved multi-spectral imaging of single biomolecules

Hayden, Carl C.; Luong, A K.; Gradinaru, Claudiu C.; Chandler, D.W.

Over the past few years we have developed the ability to acquire images through a confocal microscope that contain, for each pixel, the simultaneous fluorescence lifetime and spectra of multiple fluorophores within that pixel. We have demonstrated that our system has the sensitivity to make these measurements on single molecules. The spectra and lifetimes of fluorophores bound to complex molecules contain a wealth of information on the conformational dynamics and local chemical environments of the molecules. However, the detailed record of spectral and temporal information our system provides from fluorophores in single molecules has not been previously available. Therefore, we have studied several fluorophores and simple fluorophore-molecule systems that are representative of the use of fluorophores in biological systems. Experiments include studies of a simple fluorescence resonance energy transfer (FRET) system, green fluorescent probe variants and quantum dots. This work is intended to provide a basis for understanding how fluorophores report on the chemistry of more complex biological molecules.

More Details

Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05)

Thornberg, Steven M.; Coker, Eric N.; Steen, William A.; Jarek, Russell L.

The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform qualitatively as well as the ETEK material for the ORR, a non-trivial achievement. A fuel cell test showed that Pt/C outperformed the ETEK material by an average of 50% for a 300 hour test. Increasing surface area decreases the amount of Pt needed in a fuel cell, which translates into cost savings. Furthermore, the increased performance realized in the fuel cell test might ultimately mean less Pt is needed in a fuel cell; this again translates into cost savings. Finally, enhanced long-term stability is a key driver within the fuel cell community as improvements in this area must be realized before fuel cells find their way into the marketplace; these Pt/C materials hold great promise of enhanced stability over time. An external laser desorption ion source was successfully installed on the existing Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometer. However, operation of this laser ablation source has only generated metal atom ions, no clusters have been found to date. It is believed that this is due to the design of the pulsed-nozzle/laser vaporization chamber. The final experimental configuration and design of the two source housings are described.

More Details

New self-assembled nanocrystal micelles for biolabels and biosensors

Fan, Hongyou F.; Tallant, David T.; Brinker, C.J.

The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate the magnetic micelles, we can kill live cells, presenting a new magnetodynamic therapy without side effects.

More Details

Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires

Nakos, James T.

The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

More Details

Guide to preparing SAND reports and other communication products : version 2.0

Brittenham, Phillip W.; Johnson, Debra M.

This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided. This guide details the processes for producing a variety of communication products at Sandia National Laboratories. Figure I-1 shows the general publication development process. Because extensive supplemental material is available from Sandia on the internal Web or from external sources (Table I-1), the guide has been shortened to make it easy to find information that you need.

More Details

Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices

Phillips, Laurence R.; Baca, Michael J.; Yaklin, Laura A.; Hills, Jason L.; Margulies, Jonathan M.; Tejani, Bankim J.; Richardson, Bryan T.

Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

More Details

Rapid onsite assessment of spore viability

VanderNoot, Victoria A.; Branda, Steven B.; Gaucher, Sara P.; Lane, Todd L.

This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

More Details

Predictions of flow through an isothermal serpentine passage with linear eddy-viscosity Reynolds Averaged Navier Stokes models

Laskowski, Gregory M.

Flows with strong curvature present a challenge for turbulence models, specifically eddy viscosity type models which assume isotropy and a linear and instantaneous equilibrium relation between stress and strain. Results obtained from three different codes and two different linear eddy viscosity turbulence models are compared to a DNS simulation in order to gain some perspective on the turbulence modeling capability of SIERRA/Fuego. The Fuego v2f results are superior to the more common two-layer k-e model results obtained with both a commercial and research code in terms of the concave near wall behavior predictions. However, near the convex wall, including the separated region, little improvement is gained using the v2f model and in general the turbulent kinetic energy prediction is fair at best.

More Details

Probing deviations from traditional colloid filtration theory by atomic forces microscopy

Ballantine, Marissa D.

Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.

More Details

CX-100 and TX-100 blade field tests

Zayas, Jose R.; Jones, Perry L.; Jones, Perry L.

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

More Details

Homotopy optimization methods for global optimization

We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.

More Details

Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE)

Thompson, Aidan P.

We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

More Details

Generation of large-scale maps of science and associated indicators

Boyack, Kevin W.

Over the past several years, techniques have been developed for clustering very large segments of the technical literature using sources such as Thomson ISI's Science Citation Index. The primary objective of this work has been to develop indicators of potential impact at the paper level to enhance planning and evaluation of research. These indicators can also be aggregated at different levels to enable profiling of departments, institutions, agencies, etc. Results of this work are presented as maps of science and technology with various overlays corresponding to the indicators associated with a particular search or question.

More Details

Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study

Pasik, Michael F.; Kotulski, J.D.; Turner, C.D.

This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

More Details

Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers

Koleske, Daniel K.; Shul, Randy J.; Follstaedt, D.M.; Provencio, P.N.; Allerman, A.A.; Wright, Alan F.; Missert, Nancy A.; Baca, A.G.; Briggs, R.D.; Marsh, Philbert F.; Tigges, Chris P.

GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

More Details

Sensor for cell signaling proteins

Yelton, William G.; Farrow, Matthew F.

Thiolated cyclodextrins have been shown to be useful as modifiers of electrode surfaces for application in electrochemical sensing. The adsorption of three different thiolated {beta}-cyclodextrin ({beta}-CD) derivatives onto gold (Au) electrodes was studied by monitoring ferricyanide reduction and ferrocene carboxylic acid (FCA) oxidation at the electrode surface using cyclic voltammetry. Electrodes modified with the {beta}-CD MJF-69 derivative bound FCA within the CD cavity. The monolayer acted as a conducting layer with an increase in the oxidation current. On the other hand, the {beta}-CD layer inhibited the reduction of ferricyanide at the electrode surface since ferricyanide is larger than the cavity of the {beta}-CD derivative and thus unable to form an inclusion complex.

More Details

Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries

Bieker, Jill M.; Souza, Caroline A.

Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

More Details

Agent Model Development for Assessing Climate-Induced Geopolitical Instability

Boslough, Mark B.; Backus, George A.

We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

More Details
Results 83401–83600 of 96,771
Results 83401–83600 of 96,771