Publications

Results 4501–4600 of 96,771

Search results

Jump to search filters

Analysis of limited coverage effects on areal density measurements in inertial confinement fusion implosions

Physics of Plasmas

Gopalaswamy, V.; Betti, R.; Bahukutumbi, Radha; Crilly, A.J.; Woo, K.M.; Lees, A.; Thomas, C.; Igumenshchev, I.V.; Miller, S.C.; Knauer, J.P.; Stoeckl, C.; Forrest, C.J.; Mannion, Owen M.; Mohamed, Z.L.; Rinderknecht, H.G.; Heuer, P.V.

Accurate diagnosis of areal density (ρR) is critical for the inference of performance metrics in inertial confinement fusion implosions. One potential source of error in this diagnosis is the existence of low mode perturbations in the imploding target, which lead to asymmetries in the inference of the ρR from different lines of sight. Here, the error accrued as a result of limited coverage of the sphere due to a finite number of detectors is quantified, and the development of a forward scatter measurement from the OMEGA neutron time-of-flight detectors is motivated. A method by which the 1D-equivalent 4π-averaged ⟨ ρ R ⟩ can be reconstructed, if accurate mode information can be diagnosed by other means, is validated.

More Details

Ensuring a Nuclear Power Plant Safe State Following an EMP Event - Task 7 Deliverable: EMP Testing of Secondary Coupling to Instrumentation Cables

Bowman, Tyler B.; Guttromson, Ross G.; Martin, Luis S.

Sandia National Laboratories performed tests to address the potential vulnerability concerns of a coupled High-Altitude Electromagnetic Pulse (HEMP) inducing secondary coupling onto critical instrumentation and control cables in a nuclear power plant, with specific focus on early-time HEMP. Three types of receiving cables in nine configurations were tested to determine transfer functions between two electrically separated cables referenced to the common mode input current on the transmitting cable. One type of transfer function related the input short circuit current and resulting open circuit voltage on the receiving cable. The other transfer function related the input short circuit current and the resulting short circuit current on the receiving cable. A 500 A standard HEMP waveform was input into the transfer functions to calculate peak coupling values on the receiving cables. The highest level of coupling using the standard waveform occurred when cables were in direct contact, with a peak short circuit current of 85 A and open circuit voltage of 9.8 kV, while configurations with separated cables predicted coupling levels of less than 5 A or 500 V.

More Details

2022 Peer Review Project Summary: Advanced Protection for Microgrids and DER in Secondary Networks and Meshed Distribution Systems

Reno, Matthew J.; Ropp, Michael E.

Although there are increasing numbers of distributed energy resources (DERs) and microgrids being deployed, current IEEE and utility standards generally strictly limit their interconnection inside secondary networks. Secondary networks are low-voltage meshed (non-radial) distribution systems that create redundancy in the path from the main grid source to each load. This redundancy provides a high level of immunity to disruptions in the distribution system, and thus extremely high reliability of electric power service. There are two main types of secondary networks, called grid and spot secondary networks, both of which are used worldwide. In the future, primary networks in distribution systems that might include looped or meshed distribution systems at the primary-voltage (mediumvoltage) level may also become common as a means for improving distribution reliability and resilience. The objective of this multiyear project is to increase the adoption of microgrids in secondary networks and meshed distribution systems by developing novel protection schemes that allow for safe reliable operation of DERs in secondary networks. We will address these challenges by working with the appropriate stakeholders of secondary network operators, protection vendors, and standards committee. The outcomes of this project include: a) development and/or demonstration of candidate methods for enabling protection of secondary networks containing high levels of DER; b) development of modeling and testing tools for protection systems designed for use with secondary networks including DERs; and c) development of new industrial partnerships to facilitate widespread results dissemination and eventual commercialization of results as appropriate.

More Details

Automating Component-Level Stress Measurements for Inverter Reliability Estimation

Energies

Flicker, Jack D.; Johnson, Jay; Hacke, Peter; Thiagarajan, Ramanathan

In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous operating modes which induce new stresses on the power electronics components. In this work, an experimental and theoretical framework is introduced which couples laboratory-measured component stress with advanced inverter functionality and derives a reduction in useful lifetime based on an applicable reliability model. Multiple DER devices were instrumented to calculate the additional component stress under multiple reactive power setpoints to estimate associated DER lifetime reductions. A clear increase in switch loss was demonstrated as a function of irradiance level and power factor. This is replicated in the system-level efficiency measurements, although magnitudes were different—suggesting other loss mechanisms exist. Using an approximate Arrhenius thermal model for the switches, the experimental data indicate a lifetime reduction of 1.5% when operating the inverter at 0.85 PF—compared to unity PF—assuming the DER failure mechanism thermally driven within the H-bridge. If other failure mechanisms are discovered for a set of power electronics devices, this testing and calculation framework can easily be tailored to those failure mechanisms.

More Details

Detecting hidden transient events in noisy nonlinear time-series

Chaos

Montoya, Angela C.; Habtour, E.; Moreu, F.

The information impulse function (IIF), running Variance, and local Hölder Exponent are three conceptually different time-series evaluation techniques. These techniques examine time-series for local changes in information content, statistical variation, and point-wise smoothness, respectively. Using simulated data emulating a randomly excited nonlinear dynamical system, this study interrogates the utility of each method to correctly differentiate a transient event from the background while simultaneously locating it in time. Computational experiments are designed and conducted to evaluate the efficacy of each technique by varying pulse size, time location, and noise level in time-series. Our findings reveal that, in most cases, the first instance of a transient event is more easily observed with the information-based approach of IIF than with the Variance and local Hölder Exponent methods. While our study highlights the unique strengths of each technique, the results suggest that very robust and reliable event detection for nonlinear systems producing noisy time-series data can be obtained by incorporating the IIF into the analysis.

More Details

Magnetic properties of equiatomic CrMnFeCoNi

Physical Review B

Elmslie, Timothy A.; Startt, Jacob K.; Soto-Medina, Sujeily; Feng, Keke; Zappala, Emma; Frandsen, Benjamin A.; Meisel, Mark W.; Dingreville, Remi P.; Hamlin, James J.

Magnetic, specific heat, and structural properties of the equiatomic Cantor alloy system are reported for temperatures between 5 and 300 K, and up to fields of 70 kOe. Magnetization measurements performed on as-cast, annealed, and cold-worked samples reveal a strong processing history dependence and that high-temperature annealing after cold working does not restore the alloy to a "pristine"state. Measurements on known precipitates show that the two transitions, detected at 43 and 85 K, are intrinsic to the Cantor alloy and not the result of an impurity phase. Experimental and ab initio density functional theory computational results suggest that these transitions are a weak ferrimagnetic transition and a spin-glass-like transition, respectively, and magnetic and specific heat measurements provide evidence of significant Stoner enhancement and electron-electron interactions within the material.

More Details

A Scalable Lower Bound for the Worst-Case Relay Attack Problem on the Transmission Grid

INFORMS Journal on Computing

Johnson, Emma S.; Dey, Santanu S.

We consider a bilevel attacker–defender problem to find the worst-case attack on the relays that control transmission grid components. The attacker infiltrates some number of relays and renders all of the components connected to them inoperable with the goal of maximizing load shed. The defender responds by minimizing the resulting load shed, redispatching using a DC optimal power flow (DCOPF) problem on the remaining network. Though worst-case interdiction problems on the transmission grid have been studied for years, there remains a need for exact and scalable methods. Methods based on using duality on the inner problem rely on the bounds of the dual variables of the defender problem in order to reformulate the bilevel problem as a mixed integer linear problem. Valid dual bounds tend to be large, resulting in weak linear programming relaxations and, hence, making the problem more difficult to solve at scale. Often smaller heuristic bounds are used, resulting in a lower bound. In this work, we also consider a lower bound, but instead of bounding the dual variables, we drop the constraints corresponding to Ohm’s law, relaxing DCOPF to capacitated network flow. We present theoretical results showing that, for uncongested networks, approximating DCOPF with network flow yields the same set of injections and, thus, the same load shed, which suggests that this restriction likely gives a high-quality lower bound in the uncongested case. Furthermore, we show that, in the network flow relaxation of the defender problem, the duals are bounded by one, so we can solve our restriction exactly. Finally, because the big-M values in the linearization are equal to one and network flow has a well-known structure, we see empirically that this formulation scales well computationally with increased network size. Through empirical experiments on 16 networks with up to 6,468 buses, we find that this bound is almost always as tight as we can get from guessing the dual bounds even for congested networks in which the theoretical results do not hold. In addition, calculating the bound is approximately 150 times faster than achieving the same bound with the reformulation guessing the dual bounds.

More Details

Classification of Intensity Distributions of Transmission Eigenchannels of Disordered Nanophotonic Structures Using Machine Learning

Applied Sciences (Switzerland)

Sarma, Raktim S.; Pribisova, Abigail; Sumner, Bjorn; Briscoe, Jayson B.

Light-matter interaction optimization in complex nanophotonic structures is a critical step towards the tailored performance of photonic devices. The increasing complexity of such systems requires new optimization strategies beyond intuitive methods. For example, in disordered photonic structures, the spatial distribution of energy densities has large random fluctuations due to the interference of multiply scattered electromagnetic waves, even though the statistically averaged spatial profiles of the transmission eigenchannels are universal. Classification of these eigenchannels for a single configuration based on visualization of intensity distributions is difficult. However, successful classification could provide vital information about disordered nanophotonic structures. Emerging methods in machine learning have enabled new investigations into optimized photonic structures. In this work, we combine intensity distributions of the transmission eigenchannels and the transmitted speckle-like intensity patterns to classify the eigenchannels of a single configuration of disordered photonic structures using machine learning techniques. Specifically, we leverage supervised learning methods, such as decision trees and fully connected neural networks, to achieve classification of these transmission eigenchannels based on their intensity distributions with an accuracy greater than 99%, even with a dataset including photonic devices of various disorder strengths. Simultaneous classification of the transmission eigenchannels and the relative disorder strength of the nanophotonic structure is also possible. Our results open new directions for machine learning assisted speckle-based metrology and demonstrate a novel approach to classifying nanophotonic structures based on their electromagnetic field distributions. These insights can be of paramount importance for optimizing light-matter interactions at the nanoscale.

More Details

Elucidating the temperature dependence of TRIP in Q&P steels using synchrotron X-Ray diffraction, constituent phase properties, and strain-based kinetics models

Acta Materialia

Finfrock, Christopher B.; Ellyson, Benjamin; Likith, Sri R.J.; Smith, Douglas R.; Rietema, Connor; Saville, Alec I.; Thrun, Melissa M.; Becker, C.G.; Araujo, Ana L.; Pavlina, Erik J.; Hu, Jun; Park, Jun-Sang; Clarke, Amy J.; Clarke, Kester D.

Understanding the deformation-induced martensitic transformation (DIMT) is critical for interpreting the structure-property relationships that govern the performance of transformation-induced plasticity (TRIP) assisted steels. However, modern TRIP-assisted steels often exhibit DIMT kinetics that are not easily captured by existing empirical models based on bulk tensile strain. We address this challenge by combined bulk uniaxial tensile tests and in-situ high energy synchrotron X-ray diffraction, which resolved the phase volume fractions, stress-strain response, and microstructure evolution of each constituent phase. A modification of the Olson-Cohen model is implemented, which describes the martensitic transformation kinetics as a function of the estimated partitioned strain in austenite, rather than the bulk tensile strain. This DIMT kinetic model is used as a framework to clarify the root cause of an insufficiently understood toughness trough reported for TRIP-assisted steels during deformation at elevated temperatures. Here, the importance of the temperature-dependent toughness is discussed, based on the opportunity to modify deformation processes to tailor the DIMT kinetics and mechanical properties during forming and in service.

More Details

Classification of Photovoltaic Failures with Hidden Markov Modeling, an Unsupervised Statistical Approach

Energies

Hopwood, Michael W.; Patel, Lekha P.; Gunda, Thushara G.

Failure detection methods are of significant interest for photovoltaic (PV) site operators to help reduce gaps between expected and observed energy generation. Current approaches for field-based fault detection, however, rely on multiple data inputs and can suffer from interpretability issues. In contrast, this work offers an unsupervised statistical approach that leverages hidden Markov models (HMM) to identify failures occurring at PV sites. Using performance index data from 104 sites across the United States, individual PV-HMM models are trained and evaluated for failure detection and transition probabilities. This analysis indicates that the trained PV-HMM models have the highest probability of remaining in their current state (87.1% to 93.5%), whereas the transition probability from normal to failure (6.5%) is lower than the transition from failure to normal (12.9%) states. A comparison of these patterns using both threshold levels and operations and maintenance (O&M) tickets indicate high precision rates of PV-HMMs (median = 82.4%) across all of the sites. Although additional work is needed to assess sensitivities, the PV-HMM methodology demonstrates significant potential for real-time failure detection as well as extensions into predictive maintenance capabilities for PV.

More Details

Solid particulate mass and number from ducted fuel injection in an optically accessible diesel engine in skip-fired operation

International Journal of Engine Research

Wilmer, Brady M.; Nilsen, Christopher W.; Biles, Drummond E.; Mueller, Charles J.; Northrop, William F.

Ducted fuel injection (DFI) is a novel combustion strategy that has been shown to significantly attenuate soot formation in diesel engines. While previous studies have used optical diagnostics and optical filter smoke number methods to show that DFI reduces in-cylinder soot formation and engine-out soot emissions, respectively, this is the first study to measure solid particle number (PN) emissions in addition to particle mass (PM). Furthermore, this study quantitatively evaluates the use of transient particle instruments for measuring particles from skip-fired operation in an optical single cylinder research engine (SCRE). Engine-out PN was measured using an engine exhaust particle sizer following a catalytic stripper, and PM was measured using a photoacoustic analyzer. The study improves on earlier preliminary emissions studies by clearly showing that DFI reduces overall PM by 76%–79% and PN for particles larger than 23 nm by 77% relative to conventional diesel combustion at a 1200-rpm, 13.3-bar gross indicated mean effective pressure operating condition. The degree of engine-out PM reduction with DFI was similar across both particulate measurement instruments used in the work. Through the use of bimodal distribution fitting, DFI was also shown to reduce the geometric mean diameter of accumulation mode particles by 26%, similar to the effects of increased injection pressure in conventional diesel combustion systems. This work clearly shows the significant solid particulate matter reductions enabled by DFI while also demonstrating that engine-out PN can be accurately measured from an optical SCRE operating in a skip-fired mode. Based on these results, it is believed that DFI has the potential to enable fuel savings when implemented in multi-cylinder engines, both by lowering the required frequency of active diesel particulate filter regeneration, and by reducing the backpressure imposed by exhaust filtration systems.

More Details

Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers

Advanced Materials

Cunningham, W.S.; Riano, J.S.; Wang, Wenbo; Hwang, Sooyeon; Hattar, Khalid M.; Hodge, Andrea M.; Trelewicz, Jason R.

Targeted doping of grain boundaries is widely pursued as a pathway for combating thermal instabilities in nanocrystalline metals. However, certain dopants predicted to produce grain-boundary-segregated nanocrystalline configurations instead form small nanoprecipitates at elevated temperatures that act to kinetically inhibit grain growth. Here, thermodynamic modeling is implemented to select the Mo–Au system for exploring the interplay between thermodynamic and kinetic contributions to nanostructure stability. Using nanoscale multilayers and in situ transmission electron microscopy thermal aging, evolving segregation states and the corresponding phase transitions are mapped with temperature. The microstructure is shown to evolve through a transformation at lower homologous temperatures (<600 °C) where solute atoms cluster and segregate to the grain boundaries, consistent with predictions from thermodynamic models. An increase in temperature to 800 °C is accompanied by coarsening of the grain structure via grain boundary migration but with multiple pinning events uncovered between migrating segments of the grain boundary and local solute clustering. Direct comparison between the thermodynamic predictions and experimental observations of microstructure evolution thus demonstrates a transition from thermodynamically preferred to kinetically inhibited nanocrystalline stability and provides a general framework for decoupling contributions to complex stability transitions while simultaneously targeting a dominant thermal stability regime.

More Details
Results 4501–4600 of 96,771
Results 4501–4600 of 96,771