Publications

Results 80401–80600 of 99,299

Search results

Jump to search filters

Markov models and the ensemble Kalman filter for estimation of sorption rates

Mckenna, Sean A.; Vugrin, Kay E.W.; Vugrin, Eric

Non-equilibrium sorption of contaminants in ground water systems is examined from the perspective of sorption rate estimation. A previously developed Markov transition probability model for solute transport is used in conjunction with a new conditional probability-based model of the sorption and desorption rates based on breakthrough curve data. Two models for prediction of spatially varying sorption and desorption rates along a one-dimensional streamline are developed. These models are a Markov model that utilizes conditional probabilities to determine the rates and an ensemble Kalman filter (EnKF) applied to the conditional probability method. Both approaches rely on a previously developed Markov-model of mass transfer, and both models assimilate the observed concentration data into the rate estimation at each observation time. Initial values of the rates are perturbed from the true values to form ensembles of rates and the ability of both estimation approaches to recover the true rates is examined over three different sets of perturbations. The models accurately estimate the rates when the mean of the perturbations are zero, the unbiased case. For the cases containing some bias, addition of the ensemble Kalman filter is shown to improve accuracy of the rate estimation by as much as an order of magnitude.

More Details

Development of an inter-atomic potential for the Pd-H binary system

Zimmerman, Jonathan A.; Zhou, Xiaowang; Griffin, Joshua D.; Wong, Bryan M.

Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason for this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.

More Details

LDRD final report : robust analysis of large-scale combinatorial applications

Hart, William E.; Carr, Robert D.; Phillips, Cynthia A.; Watson, Jean-Paul

Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

More Details

Effect of nanoscale patterned interfacial roughness on interfacial toughness

Reedy, Earl D.; Moody, Neville R.; Zimmerman, Jonathan A.; Zhou, Xiaowang

The performance and the reliability of many devices are controlled by interfaces between thin films. In this study we investigated the use of patterned, nanoscale interfacial roughness as a way to increase the apparent interfacial toughness of brittle, thin-film material systems. The experimental portion of the study measured the interfacial toughness of a number of interfaces with nanoscale roughness. This included a silicon interface with a rectangular-toothed pattern of 60-nm wide by 90-nm deep channels fabricated using nanoimprint lithography techniques. Detailed finite element simulations were used to investigate the nature of interfacial crack growth when the interface is patterned. These simulations examined how geometric and material parameter choices affect the apparent toughness. Atomistic simulations were also performed with the aim of identifying possible modifications to the interfacial separation models currently used in nanoscale, finite element fracture analyses. The fundamental nature of atomistic traction separation for mixed mode loadings was investigated.

More Details

Low-bandwidth authentication

Anderson, William E.; Gaines, Brian

Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

More Details

GNEMRE DBTools : a suite of tools for access, maintenance, and manipulation of seismic data

Lewis, Jennifer E.; Ballard, Sanford

DBTools is comprised of a suite of applications for manipulating data in a database. While loading data into a database is a relatively simple operation, loading data intelligently is deceptively difficult. Loading data intelligently means: not duplicating information already in the database, associating new information with related information already in the database, and maintaining a mapping of identification numbers in the input data to existing or new identification numbers in the database to prevent conflicts between the input data and the existing data. Most DBTools applications utilize DBUtilLib--a Java library with functionality supporting database, flatfile, and XML data formats. DBUtilLib is written in a completely generic manner. No schema specific information is embedded within the code; all such information comes from external sources. This approach makes the DBTools applications immune to most schema changes such as addition/deletion of columns from a table or changes to the size of a particular data element.

More Details

Post-processing V&V level II ASC milestone (2360) results

Moreland, Kenneth D.; Chavez, Elmer; Weirs, Gregory; Brunner, Thomas A.; Trucano, Timothy G.; Karelitz, David B.

The 9/30/2007 ASC Level 2 Post-Processing V&V Milestone (Milestone 2360) contains functionality required by the user community for certain verification and validation tasks. These capabilities include loading of edge and face data on an Exodus mesh, run-time computation of an exact solution to a verification problem, delivery of results data from the server to the client, computation of an integral-based error metric, simultaneous loading of simulation and test data, and comparison of that data using visual and quantitative methods. The capabilities were tested extensively by performing a typical ALEGRA HEDP verification task. In addition, a number of stretch criteria were met including completion of a verification task on a 13 million element mesh.

More Details

"Bait vehicle" technologies and motor vehicle theft along the southwest border

Aldridge, Chris D.

In 2005, over 33% of all the vehicles reported stolen in the United States occurred in the four southwestern border states of California, Arizona, New Mexico, and Texas, which all have very high vehicle theft rates in comparison to the national average. This report describes the utilization of 'bait vehicles' and associated technologies in the context of motor vehicle theft along the southwest border of the U.S. More than 100 bait vehicles are estimated to be in use by individual agencies and auto theft task forces in the southwestern border states. The communications, tracking, mapping, and remote control technologies associated with bait vehicles provide law enforcement with an effective tool to obtain arrests in vehicle theft 'hot spots'. Recorded audio and video from inside the vehicle expedite judicial proceedings as offenders rarely contest the evidence presented. At the same time, law enforcement is very interested in upgrading bait vehicle technology through the use of live streaming video for enhanced officer safety and improved situational awareness. Bait vehicle effectiveness could be enhanced by dynamic analysis of motor theft trends through exploitation of geospatial, timeline, and other analytical tools to better inform very near-term operational decisions, including the selection of particular vehicle types. This 'information-led' capability would especially benefit from more precise and timely information on the location of vehicles stolen in the United States and found in Mexico. Introducing Automated License Plate Reading (ALPR) technology to collect information associated with stolen motor vehicles driven into Mexico could enhance bait vehicle effectiveness.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 4, West Hackberry site, Louisiana

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 4 focuses on the West Hackberry SPR site, located in southwestern Louisiana. Volumes 1, 2, and 3, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the Bryan Mound SPR site, Texas. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Coordinated machine learning and decision support for situation awareness

Draelos, Timothy J.; Brannon, Nathan; Conrad, Gregory N.; Zhang, Pengchu

For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

More Details

Arsenic pilot plant operation and results : Anthony, New Mexico

Cappelle, Malynda A.; Kottenstette, Richard J.; Everett, Randy; Holub Jr., William E.; Siegel, Malcolm; Wright, Jerome L.; Aragon, Alicia R.; Dwyer, Brian P.

Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative water treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot tests have been conducted in New Mexico where over 90 sites that exceed the new MCL have been identified by the New Mexico Environment Department. The pilot test described in this report was conducted in Anthony, New Mexico between August 2005 and December 2006 at Desert Sands Mutual Domestic Water Consumers Association (MDWCA) (Desert Sands) Well No.3. The pilot demonstrations are a part of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The Sandia National Laboratories pilot demonstration at the Desert Sands site obtained arsenic removal performance data for fourteen different adsorptive media under intermittent flow conditions. Well water at Desert Sands has approximately 20 ppb arsenic in the unoxidized (arsenite-As(III)) redox state with moderately high total dissolved solids (TDS), mainly due to high sulfate, chloride, and varying concentrations of iron. The water is slightly alkaline with a pH near 8. The study provides estimates of the capacity (bed volumes until breakthrough at 10 ppb arsenic) of adsorptive media in the same chlorinated water. Adsorptive media were compared side-by-side in ambient pH water with intermittent flow operation. This pilot is broken down into four phases, which occurred sequentially, however the phases overlapped in most cases.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 3, Bryan Mound Site, Texas

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 3 focuses on the Bryan Mound SPR site, located in southeastern Texas. Volumes 1, 2, and 4, respectively, present images for the Bayou Choctaw SPR site, Louisiana, the Big Hill SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system

Moody, Neville R.

The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness as mixed mode loading approaches mode II conditions.

More Details

Strengthening the foundations of proliferation assessment tools

Saltiel, David H.; Rochau, Gary E.; Rexroth, Paul E.; Cleary, Virginia D.

Robust and reliable quantitative proliferation assessment tools have the potential to contribute significantly to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and interdependencies between attributes that lead to proliferation resistance. We suggest that these limitations flow substantially from weaknesses in the foundations of existing methodologies--the initial data inputs. In most existing methodologies, little consideration has been given to the utilization of varying types of inputs--particularly the mixing of subjective and objective data--or to identifying, understanding, and untangling relationships and dependencies between inputs. To address these concerns, a model set of inputs is suggested that could potentially be employed in multiple approaches. We present an input classification scheme and the initial results of testing for relationships between these inputs. We will discuss how classifying and testing the relationship between these inputs can help strengthen tools to assess the proliferation risk of nuclear fuel cycle processes, systems, and facilities.

More Details

Improving human effectiveness for extreme-scale problem solving : final report (assessing the effectiveness of electronic brainstorming in an industrial setting)

Davidson, George S.; Dornburg, Courtney C.; Adams, Susan S.; Hendrickson, Stacey M.; Bauer, Travis L.; Forsythe, James C.

An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The current experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Findings are twofold. First, the data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out performed the group working together. The theoretical and applied (e.g., cost effectiveness) implications of this finding are discussed. Second, the current experiment yielded several viable solutions to the wickedly difficult problem that was posed.

More Details

Recognition using gait

Koch, Mark W.

Gait or an individual's manner of walking, is one approach for recognizing people at a distance. Studies in psychophysics and medicine indicate that humans can recognize people by their gait and have found twenty-four different components to gait that taken together make it a unique signature. Besides not requiring close sensor contact, gait also does not necessarily require a cooperative subject. Using video data of people walking in different scenarios and environmental conditions we develop and test an algorithm that uses shape and motion to identify people from their gait. The algorithm uses dynamic time warping to match stored templates against an unknown sequence of silhouettes extracted from a person walking. While results under similar constraints and conditions are very good, the algorithm quickly degrades with varying conditions such as surface and clothing.

More Details

Production of algal-based biofuel using non-fresh water sources

Sun, Amy C.; Ballantine, Marissa D.

The goal of this LDRD involves development of a system dynamics model to understand the interdependencies between water resource availability and water needs for production of biofuels. Specifically, this model focuses on availability and feasibility of non-traditional water sources from dairy wastewater, produced water from crude oil production and from coal-bed methane gas extraction for the production of algal-based biofuel. The conceptual simulation framework and historical data are based on two locales within New Mexico, the San Juan basin in the northwest and the Permian basin in the southeast, where oil and gas drilling have increased considerably in the last ten years. The overall water balance ignores both transportation options and water chemistry and is broken down by county level. The resulting model contains an algal growth module, a dairy module, an oil production module, and a gas production module. A user interface is also created for controlling the adjustable parameters in the model. Our preliminary investigation indicates a cyclical demand for non-fresh water due to the cyclical nature of algal biomass production and crop evapotranspiration. The wastewater from the dairy industry is not a feasible non-fresh water source because the agricultural water demand for cow's dry feed far exceeds the amount generated at the dairy. The uncertainty associated with the water demand for cow's dry matter intake is the greatest in this model. The oil- and gas-produced water, ignoring the quality, provides ample supply for water demand in algal biomass production. There remains work to address technical challenges associated with coupling the appropriate non-fresh water source to the local demand.

More Details

Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology

Davidson, George S.; Brown, William M.

Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3

More Details

Chemical exchange program analysis

Waffelaert, Pascale

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

More Details

Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA)

Parma, Edward J.; Smith, David L.

This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

More Details

Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites

Hibbs, Michael; Stechel, Ellen B.

Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

More Details

An ab Initio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite

Journal of Physical Chemistry C

Larentzos, James P.; Greathouse, Jeffery A.; Cygan, Randall T.

The structural and vibrational properties of two uncharged 2:1 phyllosilicates, talc and pyrophyllite, are investigated via ab initio and classical molecular dynamics simulations. The quantum mechanical simulations are based on plane-wave pseudopotential density functional theory (DFT), which is shown to be sufficiently accurate in predicting the clay mineral structural and vibrational properties. The classical molecular dynamics (MD) simulations, using the CLAYFF force field, faithfully reproduce the crystal structures with relatively simple analytical functions that include primarily nonbonded interactions. The adsorption properties in these clay minerals are strongly dependent upon the disposition of the hydroxyl group in the octahedral sheet. With the assistance of molecular simulation, the relationship between the hydroxyl group vibrational modes and the molecular-scale structure is explored. The talc hydroxyl groups are oriented perpendicular to the ab plane, while the presence of the dioctahedral vacancies associated with pyrophyllite significantly alters the hydroxyl group structural and vibrational character. Overall, a detailed comparison between the ab initio and the classical MD structural and vibrational properties provides guidance for future refinements to the empirical force field. © 2007 American Chemical Society.

More Details

Phase and group delays for circularly polarized GPS microstrip antennas

Proceedings of the Annual Meeting - Institute of Navigation

Dong, Weixin; Williams, Jeffery T.; Jackson, David R.; Basilio, Lorena I.

The antenna element in a GPS receiver is a source of positional errors that need to be accounted for in moderate-to-high precision GPS systems. In this paper the phase and group delays are calculated for common circularly-polarized (CP) microstrip (patch) antenna designs. The phase and group delays are calculated using a theoretical cavity model as well as an accurate finiteelement electromagnetic simulator (Ansoft HFSS). Results for right-handed circular polarization (RHCP) antennas fed in two different ways are explored: an orthogonal-feed antenna and a diagonal-feed antenna. All results are for operation at the Ll frequency (1.575 GHz). It is shown that the group delay is much larger than the phase delay, due to the high-Q nature of the patch antenna (low bandwidth). Of particular interest is the variation of the phase and group delays with observation angles, since this translates into delays that will be different for each satellite signal, and hence directly corresponds to a positional error.

More Details

Microfluidics and microacoustics for miniature flow cytometry

2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings

Ravula, Surendra K.; Branch, Darren W.; Sigman, Jennifer; Clem, Paul; Kaduchak, Gregory; Brener, Igal

Flow cytometry is an indispensable tool in clinical diagnostics, for example in cancer, AIDS, infectious disease outbreaks, microbiology, and others. The cost and size of existing cytometers precludes their entry into field clinics, water monitoring, agriculture/veterinary diagnostics, and rapidly deployable biothreat detection. Much of the cost and footprint of conventional cytometers is dictated by the high speed achieved by cells or beads in a hydrodynamically focused stream. This constraint is removed by using ultrasonic focusing in a parallel microfluidic architecture. In this paper, we describe our progress towards a microfabricated flow cytometer that uses bulk and microfabricated planar piezoelectric transducers in glass microfluidic channels. In addition to experimental data, initial modeling data to predict the performance of our transducers are discussed.

More Details

Structure of Poly(dialkylsiloxane) Melts:  Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory

Macromolecules

Grest, Gary S.

Here, wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Finally, experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.

More Details

Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber

Applied Optics

Adams, Richard G.; Jones, Michael

Generation and effects of atmospherically propagated electromagnetic pulses (EMPs) initiated by photoelectrons ejected by the high density and temperature target surface plasmas from multiterawatt laser pulses are analyzed. These laser radiation pulse interactions can significantly increase noise levels, thereby obscuring data (sometimes totally) and may even damage sensitive probe and detection instrumentation. Noise effects from high energy density (approximately multiterawatt) laser pulses (~300–400 ps pulse widths) interacting with thick (~1 mm) metallic and dielectric solid targets and dielectric–metallic powder mixtures are interpreted as transient resonance radiation associated with surface charge fluctuations on the target chamber that functions as a radiating antenna. Effective solutions that minimize atmospheric EMP effects on internal and proximate electronic and electro-optical equipment external to the system based on systematic measurements using Moebius loop antennas, interpretations of signal periodicities, and dissipation indicators determining transient noise origin characteristics from target emissions are described. Analytic models for the effect of target chamber resonances and associated noise current and temperature in a probe diode laser are described.

More Details

Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2

Physical Chemistry Chemical Physics

Knepp, Adam M.; Meloni, Giovanni; Jusinski, Leonard E.; Taatjes, Craig A.; Cavallotti, Carlo; Klippenstein, Stephen J.

The production of OH and HO2 in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C 6H11O2 surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO2 and OH in radical + O 2 reactions. © the Owner Societies.

More Details

Push-pull analysis of photonic Doppler velocimetry measurements

Review of Scientific Instruments

Dolan, D.H.; Jones, Scott C.

A robust analysis method is presented for multiple-phase heterodyne velocimetry measurements. By combining information from three phase-shifted signals, it is possible to eliminate coherent intensity variations and incoherent light from the measurement. The three data signals are reduced to a pair of quadrature signals, allowing unambiguous calculation of target displacement. The analysis relies on a minimum number of adjustable parameters, and these parameters can be precisely determined from simple interferometer characterization. © 2007 American Institute of Physics.

More Details

Adaptive particle management in a particle-in-cell code

Journal of Computational Physics

Oliver, Bryan V.

In particle-based plasma simulation, when dealing with source terms such as ionization, emission from boundaries, etc., the total number of particles can grow, at times, exponentially. Additionally, problems involving the spatial expansion of dynamic plasmas can result in statistical under representation of particle distributions in critical regions. Furthermore, when considering code optimization for massively parallel operation, it is useful to maintain a uniform number of particles per cell. Accordingly, we have developed an algorithm for coalescing or fissioning particles on 2D and 3D orthogonal grids that is based on a method of Assous et al. [F. Assous, T. Pougeard Dulimbert, J. Segre, J. Comput. Phys. 187 (2003) 550]. Here, we present the algorithm and describe in detail its application to particle-in-cell simulations of gas ionization/streamer formation and dynamic, expanding plasmas.

More Details

Updating a user friendly combined lifetime failure distribution

2007 Proceedings - Annual Reliability and Maintainability Symposium, RAMS

Briand, Daniel; Campbell, James E.; Huzurbazar, Aparna V.

The Sandia National Laboratories' developed Combined Lifecycle (CMBL) distribution provides an application friendly method for characterizing a component's failure or lifecycle distribution. This paper explores methods for updating the CMBL distribution as new data become available. The initial results obtained in applying Method 1, a Bayesian sequential updating methodology, to the CMBL distribution shows some promise. However, additional research is needed for the updating process involved with the random portion of the curve. Future evaluation of Methods 2 and 3 should also provide greater flexibility in the use of the CMBL distribution and with some generalizing modifications, should apply to other sectional time-to-failure (TTF) failure models. The method developed in this effort for updating the CMBL distribution and other TTF distributions, should be valuable in enhancing maintenance planning and real-time situational awareness processes. This method, used in enterprise level and prognostics and health management (PHM) modeling, should more accurately help provide instant feedback on the current status of equipment; provide tactical assessment of the readiness of equipment for the next campaign; identify parts, services, etc. that are likely to be required during the next campaign; provide a realistic basis for scheduling and optimizing equipment maintenance schedules; and help ensure that the useful life of expensive components is maximized while reducing the incidence of unplanned maintenance. © 2007 IEEE.

More Details

Quantitative extraction of spectral line intensities and widths from x-ray spectra recorded with gated microchannel plate detectors

Review of Scientific Instruments

Dunham, Greg; Bailey, James E.; Rochau, G.A.; Lake, Patrick; Nielsen-Weber, L.B.

Plasma spectroscopy requires determination of spectral line intensities and widths. At Sandia National Laboratories Z facility we use elliptical crystal spectrometers equipped with gated microchannel plate detectors to record time and space resolved spectra. We collect a large volume of data typically consisting of five to six snapshots in time and five to ten spectral lines with 30 spatial elements per frame, totaling to more than 900 measurements per experiment. This large volume of data requires efficiency in processing. We have addressed this challenge by using a line fitting routine to automatically fit each spectrum using assumed line profiles and taking into account photoelectron statistics to efficiently extract line intensities and widths with uncertainties. We verified that the random data noise obeys Poisson statistics. Rescale factors for converting film exposure to effective counts required for understanding the photoelectron statistics are presented. An example of the application of these results to the analysis of spectra recorded in Z experiments is presented. © 2007 American Institute of Physics.

More Details

Invited Article: Simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy

Review of Scientific Instruments

Beechem, Thomas; Graham, Samuel; Kearney, Sean P.; Phinney, Leslie; Serrano, Justin R.

Analysis of the Raman Stokes peak position and its shift has been frequently used to estimate either temperature or stress in microelectronics and microelectromechanical system devices. However, if both fields are evolving simultaneously, the Stokes shift represents a convolution of these effects, making it difficult to measure either quantity accurately. By using the relative independence of the Stokes linewidth to applied stress, it is possible to deconvolve the signal into an estimation of both temperature and stress. Using this property, a method is presented whereby the temperature and stress were simultaneously measured in doped polysilicon microheaters. A data collection and analysis method was developed to reduce the uncertainty in the measured stresses resulting in an accuracy of ±40 MPa for an average applied stress of -325 MPa and temperature of 520 °C. Measurement results were compared to three-dimensional finite-element analysis of the microheaters and were shown to be in excellent agreement. This analysis shows that Raman spectroscopy has the potential to measure both evolving temperature and stress fields in devices using a single optical measurement. © 2007 American Institute of Physics.

More Details

A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project

Brainard, James R.; Glass Jr., Robert J.

This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods.

More Details

Infiltration in unsaturated layered fluvial deposits at Rio Bravo : photo essay and data summary

Glass Jr., Robert J.

An infiltration and dye transport experiment was conducted to visualize flow and transport processes in a heterogeneous, layered, sandy-gravelly fluvial deposit adjacent to Rio Bravo Boulevard in Albuquerque, NM. Water containing red dye followed by blue-green dye was ponded in a small horizontal zone ({approx}0.5 m x 0.5 m) above a vertical outcrop ({approx}4 m x 2.5 m). The red dye lagged behind the wetting front due to slight adsorption thus allowing both the wetting front and dye fronts to be observed in time at the outcrop face. After infiltration, vertical slices were excavated to the midpoint of the infiltrometer exposing the wetting front and dye distribution in a quasi three-dimensional manner. At small-scale, wetting front advancement was influenced by the multitude of local capillary barriers within the deposit. However at the scale of the experiment, the wetting front appeared smooth with significant lateral spreading {approx} twice that in the vertical, indicating a strong anisotropy due to the pronounced horizontal layering. The dye fronts exhibited appreciably more irregularity than the wetting front, as well as the influence of preferential flow features (a fracture) that moved the dye directly to the front, bypassing the fresh water between.

More Details

Characterization of high-pressure, underexpanded hydrogen-jet flames

International Journal of Hydrogen Energy

Schefer, Robert W.; Houf, William G.; Houf, William G.; Bourne, B.; Colton, J.

Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases.

More Details

Total ionizing dose effects in NOR and NAND flash memories

IEEE Transactions on Nuclear Science

Cellere, Giorgio; Paccagnella, Alessandro; Visconti, Angelo; Bonanomi, Mauro; Beltrami, S.; Schwank, James R.; Shaneyfelt, Marty R.; Paillet, Philippe

We irradiated floating gate (FG) memories with NOR and NAND architecture by using different TID sources, including 2 MeV, 98 MeV, and 105 MeV protons, X-rays, and γ-rays. Two classes of phenomena are responsible for charge loss from programmed FGs: the first is charge generation, recombination, and transport in the dielectrics, while the second is the emission of electrons above the oxide band. Charge loss from programmed FGs irradiated with protons of different energy closely tracks results from γ-rays, whereas the use of X-rays results in dose enhancement effects. © 2007 IEEE.

More Details

Photofission in uranium by nuclear reaction gamma-rays

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Morse, Daniel H.; Antolak, Arlyn J.; Doyle, B.L.

The ideal photon source for active interrogation of fissile materials would use monoenergetic photons to minimize radiation dose to surroundings. The photon energy would be high enough to produce relatively large photofission signals, but below the photoneutron threshold for common cargo materials in order to reduce background levels. To develop such a source, we are investigating the use of low-energy, proton-induced nuclear reactions to generate monochromatic, MeV-energy gamma-rays. Of particular interest are the nuclear resonances at 163 keV for the 11B(p,γ)12C reaction producing 11.7 MeV gamma-rays, 340 keV for the 19F(p,αγ)16O reaction producing 6.13 MeV photons, and 441 keV for the 7Li(p,γ)8Be reaction producing 14.8 and 17.7 MeV photons. A 700 keV Van de Graaff ion accelerator was used to test several potential (p,γ) materials and the gamma-ray yields from these targets were measured with a 5″ × 5″ NaI detector. A pulsed proton beam from the accelerator was used to induce prompt (neutron) and delayed (neutron and gamma-ray) photofission signals in uranium which were measured with 3He and NaI detectors. We show that the accelerator data is in good agreement with Monte Carlo radiation transport calculations and published results.

More Details

Particulate characterization by PIXE multivariate spectral analysis

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, B.L.; Richardson, Charles B.

Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media.

More Details

Vision-based threat detection in dynamic environments

Carlson, Jeffrey

This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A prevailing threat is the covert placement of bombs inside crowded public facilities. Although video-surveillance systems are increasingly common, current systems cannot detect the placement of bombs. It is also unlikely that security personnel could detect a bomb or its placement by observing video from surveillance cameras. The problems lie in the large number of cameras required to monitor large areas, the limited number of security personnel employed to protect these areas, and the intense diligence required to effectively screen live video from even a single camera. Different from existing video-detection systems designed to operate in nearly static environments, we are developing technology to detect changes in the background of dynamic environments: environments where motion and human activities are persistent over long periods. Our goal is to quickly detect background changes, even if the background is visible to the camera less than 5 percent of the time and possibly never free from foreground activity. Our approach employs statistical scene models based on mixture densities. We hypothesized that the background component of the mixture has a small variance compared to foreground components. Experiments demonstrate this hypothesis is true under a wide variety of operating conditions. A major focus involved the development of robust background estimation techniques that exploit this property. We desire estimation algorithms that can rapidly produce accurate background estimates and detection algorithms that can reliably detect background changes with minimal nuisance alarms. Another goal is to recognize unusual activities or foreground conditions that could signal an attack (e.g., large numbers of running people, people falling to the floor, etc.). Detection of background changes and/or unusual foreground activity can be used to alert security forces to the presence and location of potential threats. The results of this research are summarized in several MS Power-point slides included with this report.

More Details

Infrared microspectroscopic study of the thermo-oxidative degradation of hydroxy-terminated polybutadiene/isophorone diisocyanate polyurethane rubber

Polymer Degradation and Stability

Nagle, Dylan J.; Celina, Mathew; Rintoul, Llewellyn; Fredericks, Peter M.

Hydroxy-terminated polybutadiene/isophorone diisocyanate (HTPB/IPDI) polyurethane rubber which was aged in air at elevated temperatures has been studied by infrared microspectroscopy. Spectra were collected in transmission mode on microtomed samples. Analysis of sets of spectra taken across the sectioned material showed that most of the degradation occurred in the polybutadiene part of the polymer and that the urethane linkage was essentially unchanged. The trans isomer of the polybutadiene appears to be preferentially degraded compared with the vinyl isomer. The IR technique does not provide significant information about the cis isomer. The IR spectra indicated that likely degradation products included acids, esters, alcohols, and small amounts of other products containing a carbonyl functional group. Band area ratios, supported by a principal components analysis, were used to derive degradation profiles for the material. These profiles were steep-sided indicating an oxygen diffusion limited process. © 2007 Elsevier Ltd. All rights reserved.

More Details

Erbium hydride thermal desorption : controlling kinetics

Ferrizz, Robert

Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

More Details

Mobility analysis tool based on the fundamental principle of conservation of energy

Spletzer, Barry L.; Nho, Hyuchul C.

In the past decade, a great deal of effort has been focused in research and development of versatile robotic ground vehicles without understanding their performance in a particular operating environment. As the usage of robotic ground vehicles for intelligence applications increases, understanding mobility of the vehicles becomes critical to increase the probability of their successful operations. This paper describes a framework based on conservation of energy to predict the maximum mobility of robotic ground vehicles over general terrain. The basis of the prediction is the difference between traction capability and energy loss at the vehicle-terrain interface. The mission success of a robotic ground vehicle is primarily a function of mobility. Mobility of a vehicle is defined as the overall capability of a vehicle to move from place to place while retaining its ability to perform its primary mission. A mobility analysis tool based on the fundamental principle of conservation of energy is described in this document. The tool is a graphical user interface application. The mobility analysis tool has been developed at Sandia National Laboratories, Albuquerque, NM. The tool is at an initial stage of development. In the future, the tool will be expanded to include all vehicles and terrain types.

More Details

Neutron generator production mission in a national laboratory

Pope, Larry E.

In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

More Details

Shock response of dry sand

Reinhart, William D.; Chhabildas, L.C.; Vogler, Tracy J.

The dynamic compaction of sand was investigated experimentally and computationally to stresses of 1.8 GPa. Experiments have been performed in the powder's partial compaction regime at impact velocities of approximately 0.25, 0.5, and 0.75 km/s. The experiments utilized multiple velocity interferometry probes on the rear surface of a stepped target for an accurate measurement of shock velocity, and an impedance matching technique was used to deduce the shock Hugoniot state. Wave profiles were further examined for estimates of reshock states. Experimental results were used to fit parameters to the P-Lambda model for porous materials. For simple 1-D simulations, the P-Lambda model seems to capture some of the physics behind the compaction process very well, typically predicting the Hugoniot state to within 3%.

More Details

Simulations of non-uniform embossing:the effect of asymmetric neighbor cavities on polymer flow during nanoimprint lithography

Sun, Amy C.; Schunk, Peter R.

This paper presents continuum simulations of viscous polymer flow during nanoimprint lithography (NIL) for embossing tools having irregular spacings and sizes. Simulations varied non-uniform embossing tool geometry to distinguish geometric quantities governing cavity filling order, polymer peak deformation, and global mold filling times. A characteristic NIL velocity predicts cavity filling order. In general, small cavities fill more quickly than large cavities, while cavity spacing modulates polymer deformation mode. Individual cavity size, not total filling volume, dominates replication time, with large differences in individual cavity size resulting in non-uniform, squeeze flow filling. High density features can be modeled as a solid indenter in squeeze flow to accurately predict polymer flow and allow for optimization of wafer-scale replication. The present simulations make it possible to design imprint templates capable of distributing pressure evenly across the mold surface and facilitating symmetric polymer flow over large areas to prevent mold deformation and non-uniform residual layer thickness.

More Details

Network configuration management : paving the way to network agility

Maestas, Joseph H.

Sandia networks consist of nearly nine hundred routers and switches and nearly one million lines of command code, and each line ideally contributes to the capabilities of the network to convey information from one location to another. Sandia's Cyber Infrastructure Development and Deployment organizations recognize that it is therefore essential to standardize network configurations and enforce conformance to industry best business practices and documented internal configuration standards to provide a network that is agile, adaptable, and highly available. This is especially important in times of constrained budgets as members of the workforce are called upon to improve efficiency, effectiveness, and customer focus. Best business practices recommend using the standardized configurations in the enforcement process so that when root cause analysis results in recommended configuration changes, subsequent configuration auditing will improve compliance to the standard. Ultimately, this minimizes mean time to repair, maintains the network security posture, improves network availability, and enables efficient transition to new technologies. Network standardization brings improved network agility, which in turn enables enterprise agility, because the network touches all facets of corporate business. Improved network agility improves the business enterprise as a whole.

More Details

Electro-thermal simulation studies for pulsed voltage induced energy absorption and potential failure in microstructured ZnO varistors

IEEE Transactions on Dielectrics and Electrical Insulation

Zhao, G.; Joshi, R.P.; Lakdawala, V.K.; Hjalmarson, Harold P.

A time-dependent, two-dimensional model is used to study internal heating effects and possible device failure in ZnO varistors in response to a high-voltage pulse. The physics and qualitative trends discussed here should hold for materials with internal microstructured grain boundaries. Our analysis is based on an electro-thermal, random Voronoi network. It allows for the dynamic predictions of internal failure and to track the progression of hot-spots and thermal stresses. Results here show that application of high voltage pulses can lead to the attainment of Bi2O3 melting temperatures in the grain boundaries and an accelerated progression towards failure. Comparisons between uniform and normally distributed barrier breakdown voltage showed relatively small difference. Physically, this is shown to be associated with the applied bias regime and grain size. It is argued that reduction in grain size would help lower the maximum internal stress. This is thus a desirable feature, and would also work to enhance the hold-off voltage for a given sample size. © 2007 IEEE.

More Details

LDRD 102610 final report new processes for innovative microsystems engineering with predictive simulation

Wills, Ann E.

This LDRD Final report describes work that Stephen W. Thomas performed in 2006. The initial problem was to develop a modeling, simulation, and optimization strategy for the design of a high speed microsystem switch. The challenge was to model the right phenomena at the right level of fidelity, and capture the right design parameters. This effort focused on the design context, in contrast to other Sandia efforts focus on high-fidelity assessment. This report contains the initial proposal and the annual progress report. This report also describes exploratory work on micromaching using femtosecond lasers. Steve's time developing a proposal and collaboration on this topic was partly funded by this LDRD.

More Details

The reactivity of sodium alanates with O[2], H[2]O, and CO[2] : an investigation of complex metal hydride contamination in the context of automotive systems

Behrens, Richard; Bradshaw, Robert W.

Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowing for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.

More Details

Dynamic response of kovar to shock and ramp-wave compression

Wise, Jack L.; Jones, Scott C.; Hall, Clint A.; Sanchez, Dolores M.

Complementary gas-gun and electro-magnetic pulse tests conducted in Sandia's Dynamic Integrated Compression Experimental (DICE) Facility have, respectively, probed the behavior of electronic-grade Kovar samples under controlled impact and intermediate-strain-rate ICE (Isentropic Compression Experiment) loading. In all tests, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for conditions involving one-dimensional (i:e:, uniaxial strain) compression and release. Wave-profile data from the gas-gun impact experiments have been analyzed to assess the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of shocked Kovar. The ICE wave-profile data have been interpreted to determine the locus of isentropic stress-strain states generated in Kovar for deformation rates substantially lower than those associated with a shock process. The impact and ICE results have been compared to examine the influence of loading rate on high-pressure strength.

More Details
Results 80401–80600 of 99,299
Results 80401–80600 of 99,299