Publications

19 Results

Search results

Jump to search filters

Two-way coupling of Presto v2.8 and CTH v8.1

Edwards, Harold C.; Crawford, D.A.; Bishop, Joseph E.

A loose two-way coupling of SNL's Presto v2.8 and CTH v8.1 analysis code has been developed to support the analysis of explosive loading of structures. Presto is a Lagrangian, three-dimensional explicit, transient dynamics code in the SIERRA mechanics suite for the analysis of structures subjected to impact-like loads. CTH is a hydro code for modeling complex multi-dimensional, multi-material problems that are characterized by large deformations and/or strong shocks. A fundamental assumption in this loose coupling is that the compliance of the structure modeled with Presto is significantly smaller than the compliance of the surrounding medium (e.g. air) modeled with CTH. A current limitation of the coupled code is that the interaction between CTH and thin structures modeled in Presto (e.g. shells) is not supported. Research is in progress to relax this thin-structure limitation.

More Details

Low-Altitude Airbursts and the Impact Threat - Final LDRD Report

Boslough, Mark B.; Crawford, D.A.

The purpose of this nine-week project was to advance the understanding of low-altitude airbursts by developing the means to model them at extremely high resolution in order to span the scales of entry physics as well as blast wave and plume formation. Small asteroid impacts on Earth are a recognized hazard, but the full nature of the threat is still not well understood. We used shock physics codes to discover emergent phenomena associated with low-altitude airbursts such as the Siberian Tunguska event of 1908 and the Egyptian glass-forming event 29 million years ago. The planetary defense community is beginning to recognize the significant threat from such airbursts. Low-altitude airbursts are the only class of impacts that have a significant probability of occurring within a planning time horizon. There is roughly a 10% chance of a megaton-scale low-altitude airburst event in the next decade.The first part of this LDRD final project report is a preprint of our proceedings paper associated with the plenary presentation at the Hypervelocity Impact Society 2007 Symposium in Williamsburg, Virginia (International Journal of Impact Engineering, in press). The paper summarizes discoveries associated with a series of 2D axially-symmetric CTH simulations. The second part of the report contains slides from an invited presentation at the American Geophysical Union Fall 2007 meeting in San Francisco. The presentation summarizes the results of a series of 3D oblique impact simulations of the 1908 Tunguska explosion. Because of the brevity of this late-start project, the 3D results have not yet been written up for a peer-reviewed publication. We anticipate the opportunity to eventually run simulations that include the actual topography at Tunguska, at which time these results will be published.3

More Details

Using mesoscale modeling to investigate the role of material heterogeneity in geologic and planetary materials

Crawford, D.A.

The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials as are localized shock effects seen in some meteorites. Pre-existing fractures can also affect melt generation. Recent mesoscale studies in computational hydrodynamics have attempted to bridge the gap in numerical modeling between the microscale and the continuum,. Methods are being devised using shock physics hydrocodes such as CTH and Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials and to compare the results with experiments. Recent numerical experiments at the mesoscale using these statistical methods suggest that heterogeneity at the micro-scale plays a substantial and statistically quantifiable role in the effective shear and fracture strength of rocks. This paper will describe the methodology we are using to determine the strength of heterogeneous geologic and planetary materials.

More Details

Adaptive Mesh Refinement in CTH

Crawford, D.A.

This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems.

More Details

Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris

Crawford, D.A.

Plasma, vapor and debris associated with an impact or explosive event have been demonstrated in the laboratory to produce radiofrequency and optical electromagnetic emissions that can be diagnostic of the event. Such effects could potentially interfere with communications or remote sensing equipment if an impact occurred, for example, on a satellite. More seriously, impact generated plasma could end the life of a satellite by mechanisms that are not well understood and not normally taken into account in satellite design. For example, arc/discharge phenomena resulting from highly conductive plasma acting as a current path across normally shielded circuits may have contributed to the loss of the Olympus experimental communications satellite on August 11, 1993. The possibility of significant storm activity during the Leonid meteor showers of November 1998, 1999 and 2000 (impact velocity, 72 km/s) has heightened awareness of potential vulnerabilities from hypervelocity electromagnetic effects to orbital assets. The concern is justified. The amount of plasma, electrostatic charge and the magnitude of the resulting currents and electric fields scale nearly as the cube of the impact velocity. Even for microscopic Leonid impacts, the amount of plasma approaches levels that could be dangerous to spacecraft electronics. The degree of charge separation that occurs during hypervelocity impacts scales linearly with impactor mass. The resulting magnetic fields increase linearly with impactor radius and could play a significant role in our understanding of the paleomagnetism of planetary surfaces. The electromagnetic properties of plasma produced by hypervelocity impact have been exploited by researchers as a diagnostic tool, invoked to potentially explain the magnetically jumbled state of the lunar surface and blamed for the loss of the Olympus experimental communications satellite. The production of plasma in and around an impact event can lead to several effects: (1) the plasma provides a significant perturbation to the ambient magnetic field via the electromagnetic pulse; (2) it supports the production of transient radiofrequency electromagnetic fields; (3) it charges ejected debris which, because of inertial separation, leads to significant electrostatic and magnetostatic field production; and (4) its high electrical conductivity provides a convenient path for discharge of the resulting high electrostatic fields. Effects (1) and (2) have been discussed by the authors elsewhere. Effects (3) and (4) will be discussed here. Typical studies of kinetic energy warheads focus on lethality as a function of impactor momentum or energy as they couple mechanically to the target. At high enough energies, however, additional physical processes come into play. Vaporization plays an important role and a partially ionized plasma can form. Impact-generated plasma, charged debris and magnetic fields have been characterized by laboratory hypervelocity impact experiments and are shown to be more abundant when certain easily ionized materials (such as alkali metals) are used in either projectile or target.

More Details

A model of meteoroid atmospheric entry with implications for the NEO hazard and the impact of comet shoemaker-levy 9 on jupiter

Engineering, Construction, and Operations in Space V

Crawford, D.A.

A new semi-Analytical model describing the entry and deformation of meteoroids entering planetary atmospheres has been developed and calibrated against numerical simulations performed using the CTH shock-physics computational hydrocode. The model starts with the classical treatment of meteoroid ablation which is modified to include an explicit treatment of energy conservation during the ablative process. This is reconciled with terrestrial observations by modeling the formation of a vapor/debris layer (the visible bolide) surrounding the central meteoroid. A mechanical deformation model based on long-wavelength hydrodynamic instability growth is added and calibrated against numerical simulations performed with CTH. The analytical model provides initial conditions for numerical fireball simulations which are compared with observations of the Comet Shoemaker-Levy 9 impact on Jupiter and can be used to assess the terrestrial impact hazard. © 1996 American Society of Civil Engineers.

More Details
19 Results
19 Results