Publications

Results 82401–82600 of 96,771

Search results

Jump to search filters

Forward osmosis :a new approach to water purification and desalination

Miller, James E.

Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization of membranes is recommended. The identification of optimal osmotic agents for different applications is also suggested as it is clear that the space of potential agents and recovery processes has not been fully explored.

More Details

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM)

Simmons, J.A.; Samara, George A.

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

More Details

First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices

Physical Review B - Condensed Matter and Materials Physics

Kim, Yong H.; Tahir-Kheli, Jamil; Schultz, Peter A.; Goddard, William A.

We report on the development of an accurate first-principles computational scheme for the charge transport characteristics of molecular monolayer junctions and its application to hexanedithiolate (C6DT) devices. Starting from the Gaussian basis set density-functional calculations of a junction model in the slab geometry and corresponding two bulk electrodes, we obtain the transmission function using the matrix Green's function method and analyze the nature of transmission channels via atomic projected density of states. Within the developed formalism, by treating isolated molecules with the supercell approach, we can investigate the current-voltage characteristics of single and parallel molecular wires in a consistent manner. For the case of single C6DT molecules stretched between Au(111) electrodes, we obtain reasonable quantitative agreement of computed conductance with a recent scanning tunneling microscope experiment result. Comparing the charge transport properties of C6DT single molecules and their monolayer counterparts in the stretched and tilted geometries, we find that the effect of intermolecular coupling and molecule tilting on the charge transport characteristics is negligible in these devices. We contrast this behavior to that of the π -conjugated biphenyldithiolate devices we have previously considered and discuss the relative importance of molecular cores and molecule-electrode contacts for the charge transport in those devices. © 2006 The American Physical Society.

More Details

Application of spallation neutron sources in support of radiation hardness studies

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Griffin, Patrick; King, Donald B.; Kolb, Norm

High-power spallation neutron sources offer a unique opportunity to gather critical measurements on the very early transient displacement damage in semiconductors. This paper discusses the important attributes of spallation neutron facilities used for investigating the transient radiation hardness of semiconductors. By comparing the attributes of some different types of radiation facilities currently used for semiconductor damage characterization, a new and important role for spallation neutron sources is identified. Comparisons are made between the attributes of the spallation neutron source and fast-burst reactors, water-moderated reactors, ion microbeams, and electron accelerators. By incorporating electromagnetic shielding, photocurrent shunts and new experimental techniques, testing at spallation neutron sources has permitted the earliest measurements of transient gain to be lowered from the previous time of 250 μs, achieved at fast-burst reactors, to 8 μs. This is over a factor of 30 improvement in the test capability. © 2006 Elsevier B.V. All rights reserved.

More Details

Temperature- and species-dependent quenching of NO A 2∑ + (v′ =0) probed by two-photon laser-induced fluorescence using a picosecond laser

Journal of Chemical Physics

Settersten, Thomas B.; Patterson, Brian D.; Gray, Jeffrey A.

We report improved measurements of the temperature-dependent cross sections for the quenching of fluorescence from the A +2 (v′ =0) state of NO. Cross sections were measured for gas temperatures ranging from 294 to 1300 K for quenching by NO (X Π2), H2 O, CO2, O2, CO, N2, and C2 H2. The A +2 (v′ =0) state was populated via two-photon excitation with a picosecond laser at 454 nm, and the decay rate of the fluorescence originating from A +2 (v′ =0) was measured directly. Thermally averaged quenching cross sections were determined from the dependence of the fluorescence decay rate on the quencher gas pressure. Our measurements are compared to previous measurements and models of the quenching cross sections, and new empirical fits to the data are presented. Our new cross-section data enable predictions in excellent agreement with prior measurements of the fluorescence lifetime in an atmospheric-pressure methane-air diffusion flame. The agreement resolves discrepancies between the lifetime measurements and predictions based on the previous quenching models, primarily through improved models for the quenching by H2 O, CO2, and O2 at temperatures less than 1300 K. © 2006 American Institute of Physics.

More Details

Luminescent properties of solution-grown ZnO nanorods

Applied Physics Letters

Hsu, Julia W.; Tallant, David T.; Simpson, Regina L.; Missert, Nancy A.; Copeland, Robert G.

The optical properties of solution-grown ZnO nanorods were investigated using photolumincscence and cathodoluminescence. The as-grown nanorods displayed a broad yellow-orange sub-band-gap luminescence and a small near-band-gap emission peak. The sub-band-gap luminescence can only be observed when exciting above band gap. Scanning cathodoluminescence experiments showed that the width of the sub-band-gap luminescence is not due to an ensemble effect. Upon reduction, the sub-band-gap luminescence disappeared and the near-band-gap emission increased. Compared to ZnO powders that are stoichiometric and oxygen deficient, we conclude that the yellow-orange sub-band-gap luminescence most likely arises from bulk defects that, are associated with excess oxygen. © 2006 American Institute of Physics.

More Details

Parallel parameter study of the Wigner-Poisson equations for RTDs

Computers and Mathematics with Applications

Lasater, M.S.; Kelley, C.T.; Salinger, Andrew G.; Woolard, D.L.; Zhao, P.

We will discuss a parametric study of the solution of the Wigner-Poisson equations for resonant tunneling diodes. These structures exhibit self-sustaining oscillations in certain operating regimes. We will describe the engineering consequences of our study and how it is a significant advance from some previous work, which used much coarser grids. We use LOCA and other packages in the Trilinos framework from Sandia National Laboratory to enable efficient parallelization of the solution methods and to perform bifurcation analysis of this model. We report on the parallel efficiency and scalability of our implementation. © 2006 Elsevier Ltd. All rights reserved.

More Details

Simulating nanoscale semiconductor devices

International Journal of High Speed Electronics and Systems

Lasater, M.S.; Kelley, C.T.; Salinger, A.G.; Woolard, D.L.; Zhao, P.

The next generation of electronic devices will be developed at the nanoscale and molecular level, where quantum mechanical effects are observed. These effects must be accounted for in the design process for such small devices. One prototypical nanoscale semiconductor device under investigation is a resonant tunneling diode (RTD). Scientists are hopeful the quantum tunneling effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations. To simulate the electron transport within the RTD, the Wigner-Poisson equations are used. These equations describe the time evolution of the electrons' distribution within the device. In this paper, this model and a parameter study using this model will be presented. The parameter study involves calculating the steady-state current output from the RTD as a function of an applied voltage drop across the RTD and also calculating the stability of that solution. To implement the parameter study, the computational model was connected to LOCA (Library of Continuation Algorithms), a part of Sandia National Laboratories parallel solver project, Trilinos. Numerical results will be presented. © World Scientific Publishing Company.

More Details

Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials

Polymer Degradation and Stability

Gillen, Kenneth T.; Assink, Roger; Bernstein, Robert; Celina, Mathew

Three promising polymer material condition monitoring (CM) methods were applied to eight commercial chlorosulfonated polyethylene cable jacket materials aged under both elevated temperature and high-energy radiation conditions. The CM methods examined, cross-sectional modulus profiling, solvent uptake and NMR T2 relaxation time measurements of solvent-swelled samples, are closely related since they are all strongly influenced by the changes in overall crosslink density of the materials. Each approach was found to correlate well with ultimate tensile elongation measurements, the most widely used method for following degradation of elastomeric materials. In addition approximately universal failure criteria were found to be applicable for the modulus profiling and solvent uptake measurements, independent of the CSPE material examined and its degradation environment. For an arbitrarily assumed elongation "failure" criterion of 50% absolute, the CSPE materials typically reached "failure" when the modulus increased to ∼35 MPa and the uptake factor in p-xylene decreased to ∼1.6. © 2005 Elsevier Ltd. All rights reserved.

More Details

Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds

Journal of Biomedical Materials Research - Part A

Dellinger, Jennifer D.; Wojtowicz, Abigail M.; Jamison, Russell D.

Degradation of three types of model hydroxyapatite (HA) scaffolds was studied after in vitro degradation in a sodium acetate buffer (pH 4). Degradation was evaluated using compression testing, scanning electron microscopy (SEM), inductively coupled plasma (ICP) analysis, and weight measurements. Scaffolds were fabricated with a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. Scaffolds had a macrostructure resembling a lattice of rods. Scaffolds contained either macropores (270 or 680 μm in the x-y direction and 280 μm in the z-direction) and micropores (1-30-μm pores and pores <1 μm) or only macropores pores (270 μm in the x-y direction and 280 μm in the z-direction). A computer-aided design (CAD) program controlled the size and distribution of macropores; micropores were created by polymethyl-methacrylate (PMMA) microsphere porogens (1-30-μm pore diameter) and controlled sintering (pores <1 μm). Percent weight loss of the scaffolds and calcium and phosphorus ion concentrations in solution increased as the degradation period increased for all scaffold types. After degradation, compressive strength and compressive modulus decreased significantly for those scaffolds with microporosity. For scaffolds without microporosity, the changes in strength and modulus after degradation were not statistically significant. The compressive strength of scaffolds without microporosity was significantly greater than the scaffolds with microporosity. © 2006 Wiley Periodicals, Inc.

More Details

Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor

Plasma Sources Science and Technology

Miller, Paul A.; Barnat, Edward V.; Hebner, Gregory A.; Paterson, Alex M.; Holland, John P.

There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models. © 2006 IOP Publishing Ltd.

More Details

Frequency dependent plasma characteristics in a capacitively coupled 300 mm wafer plasma processing chamber

Plasma Sources Science and Technology

Hebner, Gregory A.; Barnat, Edward V.; Miller, Paul A.; Paterson, Alex M.; Holland, John P.

Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K. © 2006 IOP Publishing Ltd.

More Details

Thermally-related safety issues associated with thermal batteries

Guidotti, Ronald A.

More Details

Foundations of VISAR analysis

Dolan, Daniel H.

The Velocity Interferometer System for Any Reflector (VISAR) is a widely used diagnostic at Sandia National Laboratories. Although the operating principles of the VISAR are well established, recently deployed systems (such as the fast push-pull and air delay VISAR) require more careful consideration, and many common assumptions about VISAR are coming into question. This report presents a comprehensive review of VISAR analysis to address these issues. Detailed treatment of several interferometer configurations is given to identify important aspects of the operation and characterization of VISAR systems. The calculation of velocity from interferometer measurements is also described. The goal is to derive the standard VISAR analysis relationships, indicate when these relationships are valid, and provide alternative methods when the standard analysis fails.

More Details

Temporal analysis of social networks using three-way DEDICOM

Kolda, Tamara G.

DEDICOM is an algebraic model for analyzing intrinsically asymmetric relationships, such as the balance of trade among nations or the flow of information among organizations or individuals. It provides information on latent components in the data that can be regarded as ''properties'' or ''aspects'' of the objects, and it finds a few patterns that can be combined to describe many relationships among these components. When we apply this technique to adjacency matrices arising from directed graphs, we obtain a smaller graph that gives an idealized description of its patterns. Three-way DEDICOM is a higher-order extension of the model that has certain uniqueness properties. It allows for a third mode of the data, such as time, and permits the analysis of semantic graphs. We present an improved algorithm for computing three-way DEDICOM on sparse data and demonstrate it by applying it to the adjacency tensor of a semantic graph with time-labeled edges. Our application uses the Enron email corpus, from which we construct a semantic graph corresponding to email exchanges among Enron personnel over a series of 44 months. Meaningful patterns are recovered in which the representation of asymmetries adds insight into the social networks at Enron.

More Details

Evaluation of ceramic papers and tapes for use as separators in thermal batteries

Reinhardt, Frederick W.; Guidotti, Ronald A.

Ceramic tapes and papers were evaluated for potential use as separators in high-temperature thermal batteries. The bulk of the tests involved fiberglass tape and borosilicate filter discs. Quartz (SiO{sub 2}) and zirconia (ZrO{sub 2}) materials were also examined to a limited extent. In addition, custom-prepared MgO-coated ceramic discs from Inventek Inc. were evaluated as separators. The tapes and paper discs were impregnated with LiCl-KCl eutectic or LiCl-LiBr-LiF electrolytes using three different techniques. Test discs were punched from the tapes and papers, impregnated with electrolyte and evaluated as separators in Li(Si)/FeS{sub 2} single cells at 400 or 500 C at a steady-state current of 63 or 125 mA/cm{sup 2}. The performance of single cells containing these discs generally improved with increased electrolyte loading for most of the materials in the case of the LiCl-KCl eutectic. Better results were obtained with the paper filter discs than with the tapes. The best results with the paper discs were obtained with Whatman GF/A filter discs. Active lives for cells with these separators were about 85% of standard cells with pressed-powder separators. Good results were obtained in one battery test with the eutectic electrolyte. Mixed results were obtained with the LiCl-LiBr-LiF electrolyte under similar conditions. Higher loadings of electrolyte did not always translate into improved cell performance. Self-discharge reactions are believed responsible. The best overall results were obtained with the Inventek separators. Based on the results of this study, more work in this technology area is merited.

More Details

Pull strength evaluation of Sn-Pb solder joints made to Au-Pt-Pd and Au thick film structures on low-temperature co-fired ceramic -final report for the MC4652 crypto-coded switch (W80)

Zender, Gary L.

A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, the 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.

More Details

Site environmental report for 2005 Sandia National Laboratories, California

Larsen, Barbara L.

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

More Details

Investigation of temporal contrast effects in femtosecond pulse laser micromachining of metals

Palmer, Jeremy A.

Femtosecond pulse laser drilling has evolved to become a preferred process for selective (maskless) micromachining in a variety of materials, including metals, polymers, semiconductors, ceramics, and living tissue. Manufacturers of state-of-the-art femtosecond laser systems advertise the inherent advantage of micromachining with ultra short pulses: the absence of a heat affected zone. In the ideal case, this leads to micro and nano scale features without distortion due to melt or recast. However, recent studies have shown that this is limited to the low fluence regime in many cases. High dynamic range autocorrelation studies were performed on two commercial Ti:sapphire femtosecond laser systems to investigate the possible presence of a nanosecond pedestal in the femtosecond pulse produced by chirped pulse amplification. If confirmed, nanosecond temporal phenomena may explain many of the thermal effects witnessed in high fluence micromachining. The material removal rate was measured in addition to feature morphology observations for percussion micro drilling of metal substrates in vacuum and ambient environments. Trials were repeated with proposed corrective optics installed, including a variable aperture and a nonlinear frequency doubling crystal. Results were compared. Although the investigation of nanosecond temporal phenomena is ongoing, early results have confirmed published accounts of higher removal rates in a vacuum environment.

More Details

Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links

Oberkampf, William L.

Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (1) Failure of all SLs before failure of any WL, (2) Failure of any SL before failure of any WL, (3) Failure of all SLs before failure of all WLs, and (4) Failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis.

More Details

Sensitivity in risk analyses with uncertain numbers

Tucker, W.T.; Ferson, Scott

Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

More Details

Survey of sampling-based methods for uncertainty and sensitivity analysis

Sallaberry, Cedric J.

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (1) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (2) Generation of samples from uncertain analysis inputs, (3) Propagation of sampled inputs through an analysis, (4) Presentation of uncertainty analysis results, and (5) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

More Details

Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS)

Tang, Michelle D.; Walraven, J.A.; Cox, James C.; Skousen, Troy J.; Ohlhausen, J.A.; Jenkins, Mark W.; Jokiel, Bernhard J.; Parson, Ted B.

Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

More Details

Neutron scattering effects on fusion ion temperature measurements

Starner, Jason R.; Ruiz, Carlos L.

To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

More Details

Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire

Blanchat, Tom; Ricks, Allen J.; Jernigan, Dann A.

It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heat (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.

More Details

Porting salinas to the windows platform

Reese, Garth M.

The ASC program has enabled significant development of high end engineering applications on massively parallel machines. There is a great benefit in providing these applications on the desktop of the analysts and designers, at least insofar as the small models may be run on these platforms, thus providing a tool set that spans the application needs. This effort documents the work of porting Salinas to the WINDOWS{trademark} platform. Selection of the tools required to compile, link, test and run Salinas in this environment is discussed. Significant problems encountered along the way are listed along with an estimation of the overall cost of the port. This report may serve as a baseline for streamlining further porting activities with other ASC codes.

More Details

EM threat analysis for wireless systems

Mariano, Robert J.

Modern digital radio systems are complex and must be carefully designed, especially when expected to operate in harsh propagation environments. The ability to accurately predict the effects of propagation on wireless radio performance could lead to more efficient radio designs as well as the ability to perform vulnerability analyses before and after system deployment. In this report, the authors--experts in electromagnetic (EM) modeling and wireless communication theory--describe the construction of a simulation environment that is capable of quantifying the effects of wireless propagation on the performance of digital communication.

More Details

Hardware-in-the-loop testing of wireless systems in realistic environments

Mariano, Robert J.

This document describes an approach for testing of wireless systems in realistic environments that include intentional as well as unintentional radio frequency interference. In the approach, signal generators along with radio channel simulators are used to carry out hardware-in-the-loop testing. The channel parameters are obtained independently via channel sounding measurements and/or EM simulations.

More Details

Fusion transmutation of waste and the role of the In-Zinerator in the nuclear fuel cycle

Cipiti, Benjamin B.

The Z-Pinch fusion experiment at Sandia National Laboratories has been making significant progress in developing a high-energy fusion neutron source. This source has the potential to be used for the transmutation of nuclear waste. The goal of this research was to do a scoping-level design of a fusion-based transmuter to determine potential transmutation rates along with the fusion yield requirements. Two ''In-Zinerator'' designs have been developed to transmute the long-lived actinides that dominate the heat production in spent fuel. The first design burns up all transuranics (TRU) in spent fuel (Np, Pu, Am, Cm), and the second is focused only on burning up Am and Cm. The TRU In-Zinerator is designed for a fuel cycle requiring burners to get rid of all the TRU with no light water reactor (LWR) recycle. The Am/Cm In-Zinerator is designed for a fuel cycle with Np/Pu recycling in LWRs. Both types of In-Zinerators operate with a moderate fusion source driving a sub-critical actinide blanket. The neutron multiplication is 30, so a great deal of energy is produced in the blanket. With the design goal of generating 3,000 MW{sub th}, about 1,200 kg/yr of actinides can be destroyed in each In-Zinerator. Each TRU In-Zinerator will require a 20 MW fusion source, and it will take a total of 20 units (each producing 3,000 MWth) to burn up the TRU as fast as the current LWR fleet can produce it. Each Am/Cm In-Zinerator will require a 24 MW fusion source, and it will take a total of 2 units to burn up the Am/Cm as fast as the current LWR fleet can produce it. The necessary fusion yield could be achieved using a 200-240 MJ target fired once every 10 seconds.

More Details

Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories

Griffith, Richard O.; Brown, Gary S.; Betty, Rita B.; Tucker, Mark D.; Ramsey, James L.; Brockmann, John E.; Lucero, Daniel A.; Mckenna, Sean A.; Peyton, Chad E.; Einfeld, Wayne E.; Knowlton, Robert G.; Ho, Pauline H.

The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

More Details

A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories

Eldridge, John M.; Hu, Tan C.; Tolendino, Lawrence F.

Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.

More Details
Results 82401–82600 of 96,771
Results 82401–82600 of 96,771