Publications

16 Results

Search results

Jump to search filters

Pressure and flow characteristics of restrictive flow orifice devices

Shrouf, Roger D.

A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

More Details

Gas flow characterization of restrictive flow orifice devices

Shrouf, Roger D.

A restrictive flow orifice (RFO) can be used to limit the uncontrolled release of system media upon component or line failure in a gas handling system and can thereby enhance the system safety. This report describes a new RFO product available from the Swagelok Companies and specifies the gas flow characteristics of this device. A family of four different sizes of RFO devices is documented.

More Details

The Cryogenic Fail-Safe Control System (CRYOFACS): A comprehensive approach to safety in the cryogenic workplace

Shrouf, Roger D.

A safety system has been designed and constructed to mitigate the asphyxiation and low temperature hazards presented by the distribution and usage of cryogenic liquids in work spaces at Sandia National Laboratories. After identifying common accident scenarios, the CRYOFACS (Cryogenic Fail-Safe Control System) unit was designed, employing microprocessor technology and software that can be easily modified to accommodate varying laboratory requirements. Sensors have been incorporated in the unit for the early detection of accidental releases or overflows of cryogenic liquids. The CRYOFACS design includes control (and shutdown) of the cryogen source upon error detection, and interfaces with existing oxygen monitors, in common use at Sandia Labs, to provide comprehensive protection for both personnel and property.

More Details
16 Results
16 Results