The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.
Fan, Yuan; Chen, Qian; Ayres, Virginia M.; Baczewski, Andrew D.; Udpa, Lalita; Kumar, Shiva
Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Furthermore, nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.
We report on algebraic multilevel preconditioners for the parallel solution of linear systems arising from a Newton procedure applied to the finite-element (FE) discretization of the incompressible Navier-Stokes equations. We focus on the issue of how to coarsen FE operators produced from high aspect ratio elements.
The focus of this paper is a penalty-based strategy for preconditioning elliptic saddle point systems. As the starting point, we consider the regularization approach of Axelsson in which a related linear system, differing only in the (2,2) block of the coefficient matrix, is introduced. By choosing this block to be negative definite, the dual unknowns of the related system can be eliminated resulting in a positive definite primal Schur complement. Rather than solving the Schur complement system exactly, an approximate solution is obtained using a substructuring preconditioner. The approximate primal solution together with the recovered dual solution then define the preconditioned residual for the original system.
The effect of exhaust-gas recirculation (EGR) on the equivalence ratio of premixed-burn mixture in diesel combustion was investigated experimentally. The ambient oxygen concentration was systematically decreased from 21% to 10% in a constant-volume combustion vessel to simulate EGR effects in engines. Pressure measurements and time-resolved imaging of high-temperature chemiluminescence were used to characterize the temporal and spatial ignition and premixed burn characteristics of n-heptane diesel jets. With increasing EGR, ignition delay increases and the location of premixed burn occurs further down-stream from the nozzle. Subsequent to first ignition, high temperature reactions stabilize at a quasi-steady lift-off length, showing that lift-off is a bounding parameter for determining premixed-burn region. The equivalence ratio of the fuel-ambient mixture in the premixed-burn region was measured using planar laser Rayleigh scattering. Fuel-oxygen mass distribution functions show that more mass is mixed into the premixed-burn region with increasing EGR, but the equivalence ratio of this mixture is the same. The study shows that an increasing ignition delay with increasing EGR does not necessarily decrease the equivalence ratio as would be desired for reducing soot formation in low-temperature combustion engines. However, measures to improve fuel-ambient mixing, such as shortened injection durations coupled to long ignition delay, could decrease equivalence ratio.
One-dimensional (1-D) line Rayleigh thermometry is used to investigate the effects of spatial resolution and noise on thermal dissipation in turbulent non-premixed CH4/H2/N2 jet flames. The high signal-tonoise ratio and spatial resolution of the measured temperature field enables determination of the cutoff wavenumber in the 1-D temperature dissipation spectrum obtained at each flame location. The local scale inferred from this cutoff is analogous to the Batchelor scale in nonreacting flows. At downstream locations in the flames studied here, it is consistent with estimates of the Batchelor scale based on the scaling laws using local Reynolds numbers. The spectral cutoff information is used to design data analysis schemes for determining mean thermal dissipation. Laminar flame measurements are used to characterize experimental noise and correct for the noise-induced apparent dissipation in the turbulent flame results. These experimentally determined resolution and noise correction techniques are combined to give measurements of the mean thermal dissipation that are essentially fully resolved and noise-free. The prospects of using spectral results from high-resolution 1-D Rayleigh imaging measurements to design filtering schemes for Raman-based measurements of mixture fraction dissipation are also discussed.
Direct numerical simulation of a three-dimensional spatially developing turbulent slot-burner Bunsen flame has been performed with a new reduced methane-air mechanism. The mechanism, derived from sequential application of directed relation graph theory, sensitivity analysis and computational singular perturbation over the GRI-1.2 detailed mechanism is non-stiff and tailored to the lean conditions of the DNS. The simulation is performed for three flow through times, long enough to achieve statistical stationarity. The turbulence parameters have been chosen such that the combustion occurs in the thin reaction zones regime of premixed combustion. The data is analyzed to study possible influences of turbulence on the structure of the preheat and reaction zones. The results show that the mean thickness of the turbulent flame, based on progress variable gradient, is greater than the corresponding laminar flame. The effects of flow straining and flame front curvature on the mean flame thickness are quantified through conditional means of the thickness and by examining the balance equation for the evolution of the flame thickness. Finally, conditional mean reaction rate of key species compared to the laminar reaction rate profiles show that there is no significant perturbation of the heat release layer.
Carbon and low-alloy steels are common structural materials for high-pressure hydrogen gas vessels and pipelines. These steels are low cost, and a wide range of properties can be achieved through alloying, processing, and heat treatment.1 Fabricating complex structures such as gas containment vessels and pipelines is readily accomplished with steels since these materials can be formed, welded, and heat treated in large sections.
Oxygen/carbon dioxide recycle coal combustion is actively being investigated because of its potential to facilitate CO2 sequestration and to achieve emission reductions. In the work reported here, the effect of enhanced oxygen levels and CO2 bath gas is independently analyzed for their influence on single-particle pulverized coal ignition of a U.S. eastern bituminous coal. The experiments show that the presence of CO2 and a lower O2 concentration increase the ignition delay time but have no measurable effect on the time required to complete volatile combustion, once initiated. For the ignition process observed in the experiments, the CO 2 results are explained by its higher molar specific heat and the O2 results are explained by the effect of O2 concentration on the local mixture reactivity. Particle ignition and devolatilization properties in a mixture of 30% O2 in CO2 are very similar to those in air.
A 70-MA, 7-MV, ∼100-ns driver for a Z-pinch Inertial Fusion Energy (Z-IFE) power plant has been proposed. In this summary we address the transition region between the 70 Linear Transformer Driver (LTD) modules and the center Recyclable Transmission Line (RTL) load section, which convolves from the coaxial vacuum Magnetically Insulated Transmission Lines (MITL) to a parallel tri-plate and then a bi-plate disk feed. An inductive annular chamber terminates one side of the tri-plate in a manner that preserves vacuum and electrical circuit integrity without significant energy losses. The simplicity is offset by the disadvantage of the chamber size, which is proportional to the driver impedance and decreases with the addition of more parallel modules. Inductive isolation chamber sizes are estimated in this paper, based on an optimized LTD equivalent circuit simulation source driving a matched load using transmission line models. We consider the trade-offs between acceptable energy loss and the size of the inductive isolation chamber; accepting a 6% energy loss would only require a 60-nH chamber.
With the lowering of the EPA maximum contaminant level of arsenic from 50 parts per billion (ppb) to 10 ppb, many public water systems in the country and in New Mexico in particular, are faced with making decisions about how to bring their system into compliance. This document provides detail on the options available to the water systems and the steps they need to take to achieve compliance with this regulation. Additionally, this document provides extensive resources and reference information for additional outreach support, financing options, vendors for treatment systems, and media pilot project results.
This document is a review of five documents on information assurance from the Department of Defense (DoD), namely 5200.40, 8510.1-M, 8500.1, 8500.2, and an ''interim'' document on DIACAP [9]. The five documents divide into three sets: (1) 5200.40 & 8510.1-M, (2) 8500.1 & 8500.2, and (3) the interim DIACAP document. The first two sets describe the certification and accreditation process known as ''DITSCAP''; the last two sets describe the certification and accreditation process known as ''DIACAP'' (the second set applies to both processes). Each set of documents describes (1) a process, (2) a systems classification, and (3) a measurement standard. Appendices in this report (a) list the Phases, Activities, and Tasks of DITSCAP, (b) note the discrepancies between 5200.40 and 8510.1-M concerning DITSCAP Tasks and the System Security Authorization Agreement (SSAA), (c) analyze the DIACAP constraints on role fusion and on reporting, (d) map terms shared across the documents, and (e) review three additional documents on information assurance, namely DCID 6/3, NIST 800-37, and COBIT{reg_sign}.
The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.
This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.
The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.
This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.
Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.
This efforts objective was to identify and hybridize a suite of technologies enabling the development of predictive decision aids for use principally in combat environments but also in any complex information terrain. The technologies required included formal concept analysis for knowledge representation and information operations, Peircean reasoning to support hypothesis generation, Mill's's canons to begin defining information operators that support the first two technologies and co-evolutionary game theory to provide the environment/domain to assess predictions from the reasoning engines. The intended application domain is the IED problem because of its inherent evolutionary nature. While a fully functioning integrated algorithm was not achieved the hybridization and demonstration of the technologies was accomplished and demonstration of utility provided for a number of ancillary queries.
Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.
This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.
Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.
Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.
We report what is believed to be the first application of coherent anti-Stokes Raman scattering (CARS) to full-scale fire testing. A CARS instrument has been constructed at the newly commissioned FLAME (Fire Laboratory for Accreditation of Models and Experiments) facility at Sandia, where the CARS system has been used for thermometry in 2-m-diameter, turbulent methanol pool fires. Fielding of CARS in such a large-scale facility presents several challenges, including long-distance propagation of laser beams, shielding of optics from intense heat, the impact of beam steering and fiber-optic coupling of the CARS signal to remotely located detection equipment. The details of a CARS instrument that meets these challenges are presented, along with the construction of the unique new FLAME facility itself, which has been designed to accommodate optical and laser-based diagnostics to full-scale fire experimentation. The performance of the CARS instrument is investigated in a premixed methane-air flat flame to estimate the precision in single-shot CARS temperatures. Single-shot CARS spectra and best-fit temperatures from a methanol pool fire are presented, and an estimate of the pdf of the temperature fluctuations from the pool-fire environment is obtained.
In the summer of 2006, the Environmental Programs and Assurance Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), collected surface soil samples at 37 locations within one mile of the vicinity of the newly constructed Thermal Test Complex (TTC) for the purpose of determining baseline conditions against which potential future impacts to the environs from operations at the facility could be assessed. These samples were submitted to an offsite analytical laboratory for metal-in-soil analyses. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference set against which to assess potential future operational impacts at the TTC. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data are presented in graphical format with narrative commentaries on particular items of interest.
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.
The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.
A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.
The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.
This paper examined the high frequency time harmonic localization of modal fields in two dimensional cavities along unstable periodic orbits. The elliptic formalism, combined with the random phase approach, allowed the treatment of both convex and concave boundary geometries.
It is shown that for any material or structural model expressible as a Masing model, there exists a unique parallel-series (displacement-based) Iwan system that characterizes that model as a function of displacement history. This poses advantages both in terms of more convenient force evaluation in arbitrary deformation histories as well as in terms of model inversion. Characterization as an Iwan system is demonstrated through the inversion of the Ramberg-Osgood model, a force(stress)-based material model that is not explicitly invertible. An implication of the inversion process is that direct, rigorous comparisons of different Masing models, regardless of the ability to invert their constitutive relationship, can be achieved through the comparison of their associated Iwan distribution densities.
The purposes of a POD study often go beyond the estimation of a single curve based on discontinuity size. The larger goals of a particular POD study will dictate the need for additional planning beyond just deciding on the number of discontinuities and discontinuity-free areas to be included in a test specimen set. The bigger concerns lead to implementation issues that need to be planned for and fully specified prior to the collection of data. These bigger issues have been discussed under the general program areas of experimental design, protocol development and logistic and dress rehearsal. Two different programs were also summarized. Each program led to very different experimental plans. However, the common element in these programs was the use of the POD study as the basic metric for establishing capabilities and important influencing factors. Both programs were developed under the guidelines noted and referenced. Results from these studies are discussed in more detail in Spencer (2007).
The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.