Engineered Cu-rich islands were fabricated on an Al thin film to investigate pit initiation mechanisms at noble particles. X-ray photoelectron spectroscopy confirms that the thin film Cu-rich islands interdiffuse with the underlying Al substrate to form Al{sub 2}Cu islands. The defect arrays exhibit open circuit potential fluctuations whose magnitude and frequency increase as defect spacing decreases for constant island size and cathode/anode ratio. Post-exposure examination by energy dispersive spectroscopy (EDS) shows that the Al beneath the Cu-rich island dissolves with a crevice geometry. Engineered Al islands fabricated under identical conditions do not induce crevice corrosion in the vicinity of the Al defects. These results suggest that the Al dissolution is driven by the galvanic coupling between the noble island and matrix, and/or by a local change in chemistry, rather than by the presence of a defective oxide in the vicinity of the island.
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.
We report progress of a continuing effort to characterize and simulate the response of energetic materials (EMs), primarily HMX-based, under conditions leading to cookoff. Our experiments include mechanical-effects testing of HMX and FIMX with binder at temperatures nearing decomposition thresholds. Additional experiments have focused on decomposition of these EMs under confinement, measuring evolution of gas products and observing the effect of pressurization on the solid. Real-time measurements on HMX show abrupt changes that maybe due to sudden void collapse under increasing load. Postmortem examination shows significant internal damage to the pellets, including voids and cracks. These experiments have been used to help develop a constitutive model for pure HMX. Unconfined uniaxial compression tests were performed on HMX and LX-14 to examine the effect of binders on the deviatoric strength of EM pellets, and to assess the need of including deviatoric terms in the model. A scale-up experiment will be described that is being developed to validate the model and provide additional diagnostics.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is clearly linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to a predictive safety model for HMX and HMX-containing EMs. We report work in progress on monitoring the phase transition with real-time Raman spectroscopy and ultrasonic measurements aimed towards a better understanding of physical properties through the phase transition. HMX samples were confined with minimal free volume.in a cell with constant volume. The cell was heated at a controlled rate and real-time Raman spectroscopic or ultrasonic measurements were performed. Raman spectroscopy provides a clear distinction between the two phases because the vibrational transitions of the molecule change with confirmational changes associated with the phase transition. Ultrasonic time-of-flight measurements provide an additional method of distinguishing the two phases because the sound speed through the material changes with the phase transition. Ultrasonic attenuation measurements also provide information about microstructural changes such as increased porosity due to evolution of gaseous decomposition products.
Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratory testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions.
Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.
Parallel microscopic experimentation (the combinatorial approach often used in solid-state science) was applied to characterize atmospheric copper corrosion behavior. Specifically, this technique permitted relative sulfidation rates to be determined for copper containing different levels of point defects and impurities (In, Al, O, and D). Corrosion studies are inherently difficult because of complex interactions between material interfaces and the environment. The combinatorial approach was demonstrated using micron-scale Cu lines that were exposed to a humid air environment containing sub-ppm levels of H{sub 2}S. The relative rate of Cu{sub 2}S growth was determined by measuring the change in resistance of the line. The data suggest that vacancy trapping by In and Al impurities slow the sulfidation rate. Increased sulfidation rates were found for samples containing excess point defects or deuterium. Furthermore, the sulfidation rate of 14 {micro}m wide Cu lines was increased above that for planar films.
A methodology has been established to predict the effect of atmospheric corrosion on the reliability of plastic encapsulated microelectronic (PEM) devices. New experimental techniques were developed to directly characterize the Al/Au wirebond interface where corrosion primarily occurs. A deterministic empirical model describing wirebond degradation as a function of environmental conditions was generated. To demonstrate how this model can be used to determine corrosion effects on device reliability, a numerical simulation was performed on a three-lead voltage reference device. Surface reaction rate constants, environmental variables and the defect characteristics of the encapsulant were treated as distributed parameters. A Sandia-developed analytical framework (CRAX{trademark}) was used to include uncertainty in the analysis and directly calculate reliability.
A dependence of elastic response on the stress-state of a thin film has been demonstrated using the interfacial force microscope (IFM). Indentation response was measured as a function of the applied biaxial stress-state for 100 nm thick Au films. An increase in measured elastic modulus with applied compressive stress, and a decrease with applied tensile stress was observed. Measurements of elastic modulus before and after applying stress were identical indicating that the observed change in response is not due to a permanent change in film properties.
This report focuses Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications not requiring heat-shielding. Tool electronics can operate up to 300 C with a few limiting components operating to 250 C. Second generation electronics are needed to increase measurement accuracy and extend the operating range to 300 and then 350 C are identified. Custom development of high-temperature batteries and assembling techniques are touched on. Outcomes of this work are discussed and new directions for developing high-temperature industry are suggested.
A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.
Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.
Coffinite (USiO{sub 4}) has been found in numerous sedimentary and hydrothermal environments including those considered as natural analogues of nuclear waste repositories. Scanning electron microscopy (SEM) and analytical electron microscopy (AEM) studies have been conducted on a uraninite sample from a U-deposit in Canada. It is observed that the uraninite (UO{sub 2+x}) is replaced by coffinite (U[SiO{sub 4}].nH{sub 2}O) and the replacing coffinite coexists with quartz. The TEM study shows {alpha}-recoil damage, lattice distortion, and low-angle boundaries among neighboring uraninite domains. Coffinitization seems more closely associated with {alpha}-recoil-damaged uraninite areas. Electron energy-loss spectroscopy (EELS) spectrum indicates that the ratio of U(+6)U(+4) in the uraninite is about 2/3, while the coffinite is dominated by U(+4). A thermodynamic calculation indicates that coffinitization can take place most likely at temperatures below 130 C if dissolved silica concentrations are limited by amorphous silica mineral phase. In a sufficiently high silica concentration environment, coffinite can form under the oxygen fugacity of 10{sup -65}-10{sup -55} atm. The equilibrium model, however, is not able to explain the coexistence of coffinite with quartz. A kinetic model that takes account of Ostwald processes is thus proposed. The kinetic model indicates that the presence of U(+6) in uraninite and the enhanced uraninite dissolution rate may be an important factor controlling uraninite coffinitization.
Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.
The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.
The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.
The authors have directly measured the stress evolution during metal organic chemical vapor deposition of AlGaN/GaN heterostructures on sapphire. In situ stress measurements were correlated with ex situ microstructural analysis to directly determine a critical thickness for cracking and the subsequent relaxation kinetics of tensile-strained Al{sub x}Ga{sub 1{minus}x}N on GaN. Cracks appear to initiate the formation of misfit dislocations at the AlGaN/GaN interface, which account for the majority of the strain relaxation.
Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.
Flammable deposits have been analyzed from the exhaust systems of tools employing dichlorosilane (DCS) as a processing gas. Exact mass determinations with a high-resolution Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometer allowed the identification of various polysiloxane species present in such an exhaust flow. Ion-molecule reactions indicate the preferred reaction pathway of siloxane formation is through HCl loss, leading to the highly reactive polysiloxane that was detected in the flammable deposits.
This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.
Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.
A small effort was conducted at Sandia National Laboratories to explore the use of a number of modern analytic technologies in the assessment of terrorist actions and to predict trends. This work focuses on Bayesian networks as a means of capturing correlations between groups, tactics, and targets. The data that was used as a test of the methodology was obtained by using a special parsing algorithm written in JAVA to create records in a database from information articles captured electronically. As a vulnerability assessment technique the approach proved very useful. The technology also proved to be a valuable development medium because of the ability to integrate blocks of information into a deployed network rather than waiting to fully deploy only after all relevant information has been assembled.
The objective of the SIERRA framework is to provide a common software infrastructure for massively parallel computational mechanics applications. The SIERRA framework consolidates the mechanics-independent computational services required by a diverse set of mechanics applications into a shared framework. Consolidation of these computational services eliminates their redundant development and maintenance efforts and streamlines the coupling of independently developed computational mechanics capabilities into integrated multi-mechanics applications.
The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution.
This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. A previous study (SAND93-2580) reviewed the availability of accident data, identified the TIFA (Trucks Involved in Fatal Accidents) as the best source of accident data for accidents involving heavy trucks, and provided statistics on accident data collected between 1980 and 1990. The current study is an extension of the previous work and describes data collected for heavy truck accidents occurring between 1992 and 1996. The TIFA database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports and interviewing responders and witnesses for selected TEA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, effective fire temperature, fire size, fire separation, and fire duration.
SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.
Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction with SVPF. This research concludes that PFA in conjunction with SVPF provides a computationally efficient spotlight-mode image formation solution that solves the wavefront curvature problem for most standoff distances and patch sizes, regardless of squint, resolution or radar center frequency. Additional advantages are that SVPF is not iterative and has no dependence on the visual contents of the scene: resulting in a deterministic computational complexity which typically adds only thirty percent to the overall image formation time.
Sandia National Laboratories has tested and evaluated the Kinemetrics/Quanterra Q730B-bb (broadband) and Q730B-sp (short period) borehole installation remote digitizers. The test results included in this report were for response to static and dynamic input signals, seismic application performance, data time-tag accuracy, and reference signal generator (calibrator) performance. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and P1241 (Preliminary Draft) for Analog to Digital Converters; others were designed by Sandia specifically for seismic application evaluation and for supplementary criteria not addressed in the IEEE standards. When appropriate, test instrumentation calibration is traceable to the National Institute for Standards Technology (NIST).
The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at the collocation points. Unfortunately, the development of elements with C{sup 1} continuity for the potential jumps is quite complicated in 3-D. To this end, the application of Galerkin ''smoothing'' to the boundary integral equations removes the singularity at the collocation points; thus allowing the use of C{sup o} elements and potential jump distributions [4]. Successful implementations of the Galerkin Boundary Element Method to 2-D conduction [4] and elastostatic [5] problems have been reported in the literature. Thus far, the singularity removal algorithms have been based on a posterior and mathematically complex reasoning, which have required Taylor series expansion and limit processes. The application of these strategies to 3-D is expected to be significantly more complicated. In this report, we develop the formulation for a ''Regularized'' Galerkin Boundary Element Method (RGBEM). The regularization procedure involves simple manipulations using vector calculus to reduce the singularity of the hypersingular boundary integral equation by two orders for C{sup o} elements. For the case of linear potential jump distributions over plane triangles the regularized integral is simplified considerably to a double surface integral of the Green function. This is the case implemented and tested in this report. Using the example problem of flow normal to a square flat plate, the linear RGBEM predictions are demonstrated here to be more accurate, to converge faster, and to be significantly less spiked than the solutions obtained by the vortex loop method.
The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.
The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.
This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.
The advent of inductively coupled plasma-atomic emission spectrometers (ICP-AES) equipped with charge-coupled-device (CCD) detector arrays allows the application of multivariate calibration methods to the quantitative analysis of spectral data. We have applied classical least squares (CLS) methods to the analysis of a variety of samples containing up to 12 elements plus an internal standard. The elements included in the calibration models were Ag, Al, As, Au, Cd, Cr, Cu, Fe, Ni, Pb, Pd, and Se. By performing the CLS analysis separately in each of 46 spectral windows and by pooling the CLS concentration results for each element in all windows in a statistically efficient manner, we have been able to significantly improve the accuracy and precision of the ICP-AES analyses relative to the univariate and single-window multivariate methods supplied with the spectrometer. This new multi-window CLS (MWCLS) approach simplifies the analyses by providing a single concentration determination for each element from all spectral windows. Thus, the analyst does not have to perform the tedious task of reviewing the results from each window in an attempt to decide the correct value among discrepant analyses in one or more windows for each element. Furthermore, it is not necessary to construct a spectral correction model for each window prior to calibration and analysis: When one or more interfering elements was present, the new MWCLS method was able to reduce prediction errors for a selected analyte by more than 2 orders of magnitude compared to the worst case single-window multivariate and univariate predictions. The MWCLS detection limits in the presence of multiple interferences are 15 rig/g (i.e., 15 ppb) or better for each element. In addition, errors with the new method are only slightly inflated when only a single target element is included in the calibration (i.e., knowledge of all other elements is excluded during calibration). The MWCLS method is found to be vastly superior to partial least squares (PLS) in this case of limited numbers of calibration samples.
Corrosion is an important consideration in the design of a solder joint. In the case of a conduit, corrosion from both the outside service environment and the medium being transported within the pipe or tube must be addressed. Solder joints are susceptible to atmospheric corrosion, galvanic corrosion, voltage-assisted corrosion, stress corrosion cracking, and corrosion fatigue cracking. Galvanic corrosion is of particular concern, given the fact that solder joints are comprised of different metals or alloys in contact with one another.
Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).
Chemically prepared Pb(Zr{sub 0.951}Ti{sub 0.949}){sub 0.982}Nb{sub 0.018}O{sub 3} ceramics were fabricated that were greater than 95% dense for sintering temperatures as low as 925 C. Achieving high density at low firing temperatures permitted isolation of the effects of grain size, from those due to porosity, on both dielectric and pressure induced transformation properties. Specifically, two samples of similar high density, but with grain sizes of 0.7 {micro}m and 8.5 {micro}m, respectively, were characterized. The hydrostatic ferroelectric (FE) to antiferroelectric (AFE) transformation pressure was substantially less (150 MPa) for the lower grain size material than for the larger grain size material. In addition, the dielectric constant increased and the Curie temperature decreased for the sample with lower grain size. All three properties: dielectric constant magnitude, Curie point shift, and FE to AFE phase transformation pressure were shown to be semi-quantitatively consistent with internal stress levels on the order of 100 MPa.
In this letter we discusses the first application of 3-dimensional nonlocal density functional calculations to the interactions of solvated rigid polymers. The three cases considered are cylindrical polymers, bead-chain polymers, and periodic polymers. We calculate potentials of mean force, and show that polymer surface structure plays a critical role in determining the solvation energy landscape which in turn controls routes to assembly of the macromolecules.
For optical fibers used in adverse environments, a carbon coating is frequently deposited on the fiber surface to prevent water and hydrogen ingression that lead respectively to strength degradation through fatigue and hydrogen-induced attenuation. The deposition of a hermetic carbon coating onto an optical fiber during the draw process holds a particular challenge when thermally-cured specialty coatings are subsequently applied because of the slower drawing rate. In this paper, we report on our efforts to improve the low-speed carbon deposition process by altering the composition and concentration of hydrocarbon precursor gases. The resulting carbon layers have been analyzed for electrical resistance, Raman spectra, coating thickness, and surface roughness, then compared to strength data and dynamic fatigue behavior.
We demonstrate for the first time anti-guided coupling of two adjacent vertical-cavity surface-emitting lasers (VCSEL's), obtaining a 1-by-2 phase-locked array at 869 nm. The lateral index modification required for anti-guiding is achieved by a patterned 3-rim etch performed between two epitaxial growths. In contrast with prior evanescently coupled VCSEL's, adjacent anti-guided VCSEL's can emit in-phase and produce a single on-axis lobe in the far field. Greater than 2 mW of in-phase output power is demonstrated with two VCSEL's separated by 8 {micro}m. Moreover, phase locking of two VCSEL's separated by 20 {micro}m is observed, indicating the possibility of a new class of optical circuits based upon VCSEL's that interact horizontally and emit vertically.
In this letter we report the growth (by MOVPE) and characterization of quaternary AlGaInN. A combination of PL, high-resolution XRD, and RBS characterizations enables us to explore and delineate the contours of equil-emission energy and lattice parameters as functions of the quaternary compositions. The observation of room temperature PL emission as short as 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GdnN MQW heterostructures have also been grown; both x-ray diffraction and PL measurement suggest the possibility of incorporating this quaternary into optoelectronic devices.
Sweeping algorithms have become very mature and can create a semi-structured mesh on a large set of solids. However, these algorithms require that all linking surfaces be mappable or submappable. This restriction excludes solids with imprints or protrusions on the linking surfaces. The grafting algorithm allows these solids to be swept. It then locally modifies the position and connectivity of the nodes on the linking surfaces to align with the graft surfaces. Once a high-quality surface mesh is formed on the graft surface, it is swept along the branch creating a 2 3/4-D mesh.
We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.
Objective functions for unstructured hexahedral and tetrahedral mesh optimization are analyzed using matrices and matrix norms. Mesh untangling objective functions that create valid meshes are used to initialize the optimization process. Several new objective functions to achieve element invertibility and quality are investigated, the most promising being the ''condition number''. The condition number of the Jacobian matrix of an element forms the basis of a barrier-based objective function that measures the distance to the set of singular matrices and has the ideal matrix as a stationary point. The method was implemented in the Cubit code, with promising results.
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
A new method for lessening skew in mapped meshes is presented. This new method involves progressive subdivision of a surface into loops consisting of four sides. Using these loops, constraints can then be set on the curves of the surface, which will propagate interval assignments across the surface, allowing a mesh with a better skew metric to be generated.
Current hexahedral mesh generation techniques rely on a set of meshing tools, which when combined with geometry decomposition leads to an adequate mesh generation process. Of these tools, sweeping tends to be the workhorse algorithm, accounting for at least 50% of most meshing applications. Constraints which must be met for a volume to be sweepable are derived, and it is proven that these constraints are necessary but not sufficient conditions for sweepability. This paper also describes a new algorithm for detecting extruded or sweepable geometries. This algorithm, based on these constraints, uses topological and local geometric information, and is more robust than feature recognition-based algorithms. A method for computing sweep dependencies in volume assemblies is also given. The auto sweep detect and sweep grouping algorithms have been used to reduce interactive user time required to generate all-hexahedral meshes by filtering out non-sweepable volumes needing further decomposition and by allowing concurrent meshing of independent sweep groups. Parts of the auto sweep detect algorithm have also been used to identify independent sweep paths, for use in volume-based interval assignment.
Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.
Soldering provides a cost-effective means for attaching electronic packages to circuit boards using both small scale and large scale manufacturing processes. Soldering processes accommodate through-hole leaded components as well as surface mount packages, including the newer area array packages such as the Ball Grid Arrays (BGA), Chip Scale Packages (CSP), and Flip Chip Technology. The versatility of soldering is attributed to the variety of available solder alloy compositions, substrate material methodologies, and different manufacturing processes. For example, low melting temperature solders are used with temperature sensitive materials and components. On the other hand, higher melting temperature solders provide reliable interconnects for electronics used in high temperature service. Automated soldering techniques can support large-volume manufacturing processes, while providing high reliability electronic products at a reasonable cost.
A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.
Most engineering alloys contain numerous alloying elements and their solidification behavior can not typically be modeled with existing binary and ternary phase diagrams. There has recently been considerable progress in the development of thermodynamic software programs for calculating solidification parameters and phase diagrams of multi-component systems. These routines can potentially provide useful input data that are needed in multi-component solidification models. However, these thermodynamic routines require validation before they can be confidently applied to simulations of alloys over a wide range of composition. In this article, a preliminary assessment of the accuracy of the Thermo-Calc NiFe Superalloy database is presented. The database validation is conducted by comparing calculated phase diagram quantities to experimental measurements available in the literature. Comparisons are provided in terms of calculated and measured liquidus and solidus temperatures and slopes, equilibrium distribution coefficients, and multi-component phase diagrams. Reasonable agreement is observed among the comparisons made to date. Examples are provided which illustrate how the database can be used to approximate the solidification sequence and final segregation patterns in multi-component alloys. An additional example of the coupling of calculated phase diagrams to solute redistribution computations in a commercial eight component Ni base superalloy is also presented.
Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.
The C49 to C54 TiSi{sub 2} transformation temperature is shown to be reduced by increasing the ramp rate during rapid thermal processing and this effect is more pronounced for thinner initial Ti and Ti(Ta) films. Experiments were performed on blanket wafers and on wafers that had patterned polycrystalline Si lines with Si{sub 3}N{sub 4} sidewall spacers. Changing the ramp rate caused no change in the transformation temperature for 60 nm blanket Ti films. For blanket Ti films of 25 or 40 nm, however, increasing the ramp rate from 7 to 180 C/s decreased the transformation temperature by 15 C. Studies of patterned lines indicate that sheet resistance of narrow lines is reduced by increased ramp rates for both Ti and Ti(Ta) films, especially as the linewidths decrease below 0.4 {micro}m. This improvement is particularly pronounced for the thinnest Ti(Ta) films, which exhibited almost no linewidth effect after being annealed with a ramp rate of 75 C/s.
The design, fabrication and characterization of a low-voltage rotary stepper motor are presented in this work. Using a five-level polysilicon MEMS technology, steps were taken to increase the capacitance over previous stepper motor designs to generate high torque at low voltages. A low-friction hub was developed to minimize frictional loads due to rubbing surfaces, producing an estimated resistive torque of about 6 pN-m. This design also allowed investigations into the potential benefit of using hard materials such as silicon nitride for lining of both the stationary and rotating hub components. The result is an electrostatic stepper motor capable of operation at less than six volts.
Scanning capacitance microscopy (SCM) was used to study the cross section of an operating p-channel MOSFET. We discuss the novel test structure design and the modifications to the SCM hardware that enabled us to perform SCM while applying dc bias voltages to operate the device. The results are compared with device simulations performed with DAVINCI.
NIST and Sandia have developed a procedure for producing and calibrating critical dimension (CD), or linewidth, reference materials. These reference materials will be used to calibrate metrology instruments used in semiconductor manufacturing. The artifacts, with widths down to 100 nm, are produced in monocrystalline silicon with all feature edges aligned to specific crystal planes. A two-part calibration of these linewidths is used: the primary calibration, with accuracy to within a few lattice plane thicknesses, is accomplished by counting the lattice planes across the sample as-imaged through use of high-resolution transmission electron microscopy (HRTEM). The secondary calibration is the high-precision electrical CD technique. NIST and Sandia are developing critical dimension (CD), or linewidth, reference materials for use by the semiconductor industry. To meet the current requirements of this rapidly changing industry, the widths of the reference features must be at or below the widths of the finest features in production and/or development. Further, these features must produce consistent results no matter which metrology tool (e.g., scanning electron microscope, scanned probe microscope, electrical metrology) is used to make the measurement. This leads to a requirement for the samples to have planar surfaces, known sidewall angles, and uniform material composition. None of the production techniques in use in semiconductor manufacturing can produce features with all these characteristics. In addition, requirements specified in the National Technology Roadmap for Semiconductors indicate that the width of the feature must be accurately calibrated to approximately 1-2 nm, a value well beyond the current capabilities of the instruments used for semiconductor metrology.
Concerning the mitigation of high pressure core melt scenarios, the design objective for future PWRS is to transfer high pressure core melt to low pressure core melt sequences, by means of pressure relief valves at the primary circuit, with such a discharge capacity to limit the pressure in the reactor coolant system to less than 20 bar. Studies have shown that in late in-vessel reflooding scenarios there may be a time window where the pressure is indeed in this range, at the moment of the reactor vessel rupture. It has to be verified that large quantities of corium released from the vessel after failure at pressures <20 bar cannot be carried out of the reactor pit, because the melt collecting and cooling concept of future PWRs would be rendered useless. Existing experiments investigated the melt dispersal phenomena in the context of the DCH resolution for existing power plants in the USA, most of them having cavities with large instrument tunnels leading into subcompartments. For such designs, breaches with small cross sections at high vessel failure pressures had been studied. However, some present and future European PWRs have an annular cavity design without a large pathway out of the cavity other than through the narrow annular gap between the RPV and the cavity wall. Therefore, an experimental program was launched, focusing on the annular cavity design and low pressure vessel failure. The first part of the program comprises two experiments which were performed with thermite melt steam and a prototypic atmosphere in the containment in a scale 1:10. The initial pressure in the RPV-model was 11 and 15 bars, and the breach was a hole at the center of the lower head with a scaled diameter of 100 cm and 40 cm, respectively. The main results were: 78% of melt mass were ejected out of the cavity with the large hole and 21% with the small hole; the maximum pressures in the model containment were 6 bar and 4 bar, respectively. In the second part of the experimental program a detailed investigation of geometry effects is being carried out. The test facility DISCO-C has been built for performing dispersion experiments with cold simulant materials in a 1/18 scale. The fluids are water or bismuth alloy instead of melt, and nitrogen or helium instead of steam.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.
We report the growth of InSb on GaAs using InAlSb buffers of high interest for magnetic field sensors. We have grown samples by metal-organic chemical vapor deposition consisting of {approximately} 0.55 {micro}m thick InSb layers with resistive InAlSb buffers on GaAs substrates with measured electron nobilities of {approximately}40,000 cm{sup 2}/V.s. We have investigated the In{sub 1{minus}x}Al{sub x}Sb buffers for compositions x{le}0.22 and have found that the best results are obtained near x=0.12 due to the tradeoff of buffer layer bandgap and lattice mismatch.
The electrical conductivities of boron carbides, B{sub 12+x}C{sub 3{minus}x} with 0.1 < x < 1.7, between 300 and 1200K suggest the hopping of a nearly temperature-independent density of small (bi)polarons. The activation energies of the nobilities are low, {approx} 0.16 eV, and are nearly independent of the composition. At lower temperatures, conductivities have non-Arrhenius temperature dependencies and strong sensitivity to carbon concentration. Percolative aspects of low-temperature hopping are evident in this sensitivity to composition. Boron carbides' Seebeck coefficients are anomalous in that (1) they are much larger than expected from boron carbides' large carrier densities and (2) they depend only weakly on the carrier density. Carrier-induced softening of local vibrations gives contributions to the Seebeck coefficient that mirror the magnitudes and temperature dependencies found in boron carbides.
A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.
Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.
The electrical properties were investigated for ruthenium oxide based devitrifiable resistors embedded within low temperature co-fired ceramics. Special attention was given to the processing conditions and their affects on resistance and temperature coefficient of resistance (TCR). Results indicate that the conductance for these buried resistors is limited by tunneling of charge carriers through the thin glass layer between ruthenium oxide particles. A modified version of the tunneling barrier model is proposed to more accurately account for the microstructure ripening observed during thermal processing. The model parameters determined from curve fitting show that charging energy (i.e., the energy required for a charge carrier to tunnel through the glass barrier) is strongly dependent on particle size and particle-particle separation between ruthenium oxide grains. Initial coarsening of ruthenium oxide grains was found to reduce the charging energy and lower the resistance. However, when extended ripening occurs, the increase in particle-particle separation increases the charging energy, reduces the tunneling probability and gives rise to a higher resistance. The trade-off between these two effects results an optimum microstructure with a minimum resistance and TCR. Furthermore, the TCR of these resistors has been shown to be governed by the magnitude of the charging energy. Model parameters determined by our analysis appear to provide quantitative physical interpretations to the microstructural change in the resistor, which in turn, are controlled by the processing conditions.
A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.
The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.
Thermal modeling and simulations were used to analyze the thermal profiles of a polysilicon-metal test structure generated by thermally-induced voltage alteration (TIVA), a new laser-based failure analysis technique to localize shorted interconnects. The results show that variations in TIVA thermal profiles are due mainly to preferential laser absorption in various locations in the test structure. Differences in oxide thickness also affect the local heat conduction and temperature distribution. Modeling results also show that local variation in heat conduction is less important than the absorbed laser power in determining the local temperatures since our test structure has feature sizes that are small compared to the length over which heat spreads.
The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.
We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.
We compare 2 angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann-Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method which gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10 nm gold or silver media.
We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.
We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).
The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10{sup -4} M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements.
A portable, autonomous, hand-held chemical laboratory ({micro}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.
InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.
High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.
Previous work showed the possible existence of a total-dose latch effect in fully-depleted SOI transistors that could severely limit the radiation hardness of SOI devices. Other work showed that worst-case bias configuration during irradiation was the transmission gate bias configuration. In this work we further explore the effects of total-dose ionizing irradiation on fully-depleted SOI transistors. Closed-geometry and standard transistors fabricated in two fully-depleted processes were irradiated with 10-keV x rays. Our results show no evidence for a total-dose latch effect as proposed by others. Instead, in absence of parasitic trench sidewall leakage, our data suggests that the increase in radiation-induced leakage current is caused by positive charge trapping in the buried oxide inverting the back-channel interface. At moderate levels of trapped charge, the back-channel interface is slightly inverted causing a small leakage current to flow. This leakage current is amplified to considerably higher levels by impact ionization. Because the back-channel interface is in weak inversion, the top-gate bias can modulate the back-channel interface and turn the leakage current off at large, negative voltage levels. At high levels of trapped charge, the back-channel interface is fully inverted and the gate bias has little effect on leakage current. However, it is likely that this current also is amplified by impact ionization. For these transistors, the worst-case bias configuration was determined to be the ''ON'' bias configuration. These results have important implication on hardness assurance.
The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.
Starting from the microscopic light-matter interaction in form of the minimal coupling Hamiltonian, the multipole approximation for the optical response of localized electrons in atomic systems is extended to delocalized electrons in solids. A spatial averaging procedure is used to derive the electromagnetic sources for macroscopic Maxwell's equations as well as the corresponding many particle Hamiltonian on a coarse grained length scale. The results are illustrated for semiconductor bulk material up to quadruple moments for the interband transitions, where gauge invariant equations of motion for the optical response are obtained.
Simulation of chemical vapor deposition (CVD) in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for TEOS pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, is seen not to predict the low step coverage over trenches observed under short reactor residence time conditions. An apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the byproduct inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to byproduct inhibition is investigated with the combined reactor and topography simulators first by manipulating the surface to volume ratio of a simulated reactor and second by calibrating parameters in the proposed mechanism such as the calculated free energies of surface molecules. The conclusion is that the byproduct inhibition can not be enhanced to fit profile evolution data without comprising agreement with reactor scale data by simply adjusting mechanism parameters. Thus, additional surface reaction channels seem to be required to reproduce simultaneously experimental reactor-scale growth rates and experimental step coverages.
This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.
The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. The wide diversity of processes, such as diffusion, chemical reaction, and fluxing, and their possible combinations suggest that various rate laws should be expected for wetting kinetics depending on the controlling processes. These rate laws are expected to differ crucially from the standard fluid controlled wetting models found in the literature. Voitovitch et al. and Mortensen et al. have shown data that suggests diffusion control for some systems and reaction control for others. They also presented a model of wetting kinetics controlled by the diffusion of a constituent contained by the wetting fluid. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.
Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.
Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint.
Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.
Fiberglass tape and borosilicate filter discs impregnated with molten LiCl-KCl eutectic were examined for potential use as separators for high-temperature LiSi/LiCl-KCl/FeS{sub 2} thermal batteries. Test discs were punched from these materials and evaluated at 400 C in single cells at a steady-state current of 63 mA/cm{sup 2}. The performance generally improved with electrolyte loading for most of the materials. Better results were obtained with the filter discs than with the tape. The best overall results were obtained with Whatman GF/A discs. Active lives for cells with these separators were about 85% of the standard cells with pressed-powder separators. More work with other materials and electrolytes over a wider temperature range is underway, along with 5-cell-battery tests.
Thin-film electrodes of a plasma-sprayed Li-Si alloy were evaluated for use as anodes in high-temperature thermally activated (thermal) batteries. These anodes were prepared using 44% Li/56% Si (w/w) material as feed material in a special plasma-spray apparatus under helium or hydrogen, to protect this air- and moisture-sensitive material during deposition. Anodes were tested in single cells using conventional pressed-powder separators and lithiated pyrite cathodes at temperatures of 400 to 550 C at several different current densities. A limited number of 5-cell battery tests were also conducted. The data for the plasma-sprayed anodes was compared to that for conventional pressed-powder anodes. The performance of the plasma-sprayed anodes was inferior to that of conventional pressed-powder anodes, in that the cell emfs were lower (due to the lack of formation of the desired alloy phases) and the small porosity of these materials severely limited their rate capability. Consequently, plasma-sprayed Li-Si anodes would not be practical for use in thermal batteries.
High temperature XRD has been employed to monitor the devitrification of Dupont 951 low temperature co-fired ceramic (LTCC) and Dupont E84005 resistor ink. The LTCC underwent devitrification to an anorthite phase in the range of 835-875 C with activation energy of 180 kJ/mol as calculated from kinetic data. The resistor paste underwent devitrification in the 835-875 C range forming monoclinic and hexagonal celcian phases plus a phase believed to be a zinc-silicate. RuO{sub 2} appeared to be stable within this devitrified resistor matrix. X-ray radiography of a co-fired circuit indicated good structural/chemical compatibility between the resistor and LTCC.
We have discovered that small polyols are reasonably effective at stabilizing colloidal silica against aggregation, even under the conditions of high pH and salt concentration. Both quasielastic and elastic light scattering were used to show that these polyols dramatically decrease the aggregation rate of the suspension, changing the growth kinetics from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. These polyols maybe useful in the treatment of tank wastes at the Hanford site.
This paper presents a new technique for automatically detecting interval constraints for swept volumes with holes. The technique finds true volume constraints that are not necessarily imposed by the surfaces of the volume. A graphing algorithm finds independent, parallel paths of edges from source surfaces to target surfaces. The number of intervals on two paths between a given source and target surface must be equal; in general, the collection of paths determine a set of linear constraints. Linear programming techniques solve the interval assignment problem for the surface and volume constraints simultaneously.
The model parameters for the normalized 1054V1 material were compared to parameters previously generated for 1026 steel, and the transformation behavior was relatively consistent. Validation of the model predictions by heating into the austenite plus undissolved ferrite phase field and rapidly quenching resulted in reasonable predictions when compared to the measured volume fractions from optical metallography. The hot rolled 1054V1 material, which had a much coarser grain size and a non-equilibrium volume fraction of pearlite, had significantly different model parameters and the on heating transformation behavior of this material was less predictable with the established model. The differences in behavior is consistent with conventional wisdom that normalized micro-structure produce a more consistent response to processing, and it reinforces the need for additional work in this area.
We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.
In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.
The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.