Final report for the high performance commodity interconnects for clustered scientific and engineering computing. Part 1 of 3
Abstract not provided.
Abstract not provided.
Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be booby trapped. The authors have developed a method to x-ray a package using backscattered x-rays based on similar work for landmine detection. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. They are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen. Preliminary experiments have also imaged objects within or behind a wall. They are currently using a scanning x-ray source and scintillating plastic detectors. It can take several hours to image a briefcase size object. This time could be reduced if better x-ray detection methods could be used. They have looked at using pinhole photography and CCD cameras to reduce this time.
This report summarizes general guidelines for the development of Verification and Validation (V and V) plans for ASCI code projects at Sandia National Laboratories. The main content categories recommended by these guidelines for explicit treatment in Sandia V and V plans are (1) stockpile drivers influencing the code development project (2) the key phenomena to be modeled by the individual code; (3) software verification strategy and test plan; and (4) code validation strategy and test plans. The authors of this document anticipate that the needed content of the V and V plans for the Sandia ASCI codes will evolve as time passes. These needs will be reflected by future versions of this document.
This paper describes formulations of the Evaluation Planning Module that have been developed since its inception. This module is one of the core algorithms in the Pantex Process Model, a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. Pantex is responsible for three major DOE programs -- nuclear weapons disposal, stockpile evaluation, and stockpile maintenance -- using shared facilities, technicians, and equipment. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities.
The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.
The importance of turbulent fluctuations in temperature and species concentration in thermal radiation transport modeling for combustion applications is well accepted by the radiation transport and combustion communities. A number of experimental and theoretical studies over the last twenty years have shown that fluctuations in the temperature and species concentrations may increase the effective emittance of a turbulent flame by as much as 50% to 300% over the value that would be expected from the mean temperatures and concentrations. With the possibility of such a large effect on the principal mode of heat transfer from a fire, it is extremely important for fire modeling efforts that turbulence radiation interaction be well characterized and possible modeling approaches understood. Toward this end, this report seeks to accomplish three goals. First, the principal turbulence radiation interaction closure terms are defined. Second, an order of magnitude analysis is performed to understand the relative importance of the various closure terms. Finally, the state of the art in turbulence radiation interaction closure modeling is reviewed. Hydrocarbon pool fire applications are of particular interest in this report and this is the perspective from which this review proceeds. Experimental and theoretical analysis suggests that, for this type of heavily sooting flame, the turbulent radiation interaction effect is dominated by the nonlinear dependence of the Planck function on the temperature. Additional effects due to the correlation between turbulent fluctuations in the absorptivity and temperature may be small relative to the Planck function effect for heavily sooting flames. This observation is drawn from a number of experimental and theoretical discussions. Nevertheless, additional analysis and data is needed to validate this observation for heavily sooting buoyancy dominated plumes.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science, Special Issue: Pulsed Power Science and Technology
Designing and developing the 1.7 to 2.1-MJ Power Conditioning System (PCS), that will power the flashlamps of the main and power amplifiers for the National Ignition Facility (NIF) lasers, is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. Maxwell Physics International has been a partner in this process. The NIF is currently being constructed at Lawrence Livermore National Labs (LLNL). The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM, for the First Article NIF Test Module. It was built at SNL and operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final full NIF system will require at least 192 of them in four capacitor bays. This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20 %/cm with 24 capacitors.
Journal of Electroceramics
Embedded resistor circuits have been generated with the use of a Micropen system Ag conductor paste (DuPont 6142D), a new experimental resistor ink from DuPont (E84005-140), and Low Temperature Co-fired Ceramic (LTCC) green tape (DuPont A951). Sample circuits were processed under varying peak temperature ranges (835 C-875 C) and peak soak times (10 min-720 min). Resistors were characterized by SEM, TEM, EDS, and high-temperature XRD. Results indicate that devitrification of resistor glass phase to Celcian, Hexacelcian, and a Zinc-silicate phase occurred in the firing ranges used (835-875 C) but kinetics of divitrification vary substantially over this temperature range. The resistor material appears structurally and chemically compatible with the LTCC. RuO{sub 2} grains do not significantly react with the devitrifying matrix material during processing. RuO{sub 2} grains coarsen significantly with extended time and temperature and the electrical properties appear to be strongly affected by the change in RuO{sub 2} grain size.
Design Tools use a Web-based Java interface to guide a product designer through the design-to-analysis cycle for a specific, well-constrained design problem. When these Design Tools are mapped onto a Web-based distributed architecture for high-performance computing, the result is a family of Distributed Design Tools (DDTs). The software components that enable this mapping consist of a Task Sequencer, a generic Script Execution Service, and the storage of both data and metadata in an active, object-oriented database called the Product Database Operator (PDO). The benefits of DDTs include improved security, reliability, scalability (in both problem size and computing hardware), robustness, and reusability. In addition, access to the PDO unlocks its wide range of services for distributed components, such as lookup and launch capability, persistent shared memory for communication between cooperating services, state management, event notification, and archival of design-to-analysis session data.
The addition of up to approximately 16 mole% Cs{sub 2}O to vitreous P{sub 2}O{sub 5} reduces the glass transition temperature (T{sub g}) by 150 K, whereas further additions up to 50 mole% produce little additional change in T{sub g}. {sup 31}P magic angle spinning nuclear magnetic resonance spectra indicate that the phosphate network is progressively dipolymerized over the entire range of compositions. The property trend is explained by a transition in the Cs{sup +} coordination environment, from isolated Cs-polyhedra below {approximately}16 mole% Cs{sub 2}O to a corner-sharing Cs-polyhedral sub-structure in the glasses with greater Cs{sub 2}O contents. This modifier transition does not occur in Al-phosphate glasses. {sup 27}Al MAS NMR spectra indicate that the average Al coordination number decreases with increasing Al{sub 2}O{sub 3} content to avoid the formation of Al-O-Al bonds in these binary phosphate glasses.
The Sandia National Laboratories/New Mexico (SNL/NM)Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II, a disposal area for weapon components for approximately 40 years until it closed in 1987. Many different types of classified parts were disposed in unlined trenches and pits throughout the course of the landfill's history. A percentage of the parts contain explosives and/or radioactive components or contamination. The excavation has progressed backward chronologically from the last trenches filled through to the earlier pits. Excavation commenced in March 1998, and approximately 75 percent of the site (as defined by geophysical anomalies) has been completed as of November 1999. The material excavated consists primarily of classified weapon assemblies and related components, so disposition must include demilitarization and sanitization. This has resulted in substantial waste minimization and cost avoidance for the project as upwards of 90 percent of the classified materials are being demilitarized and recycled. The project is using field screening and lab analysis in conjunction with preliminary and in-process risk assessments to characterize soil and make waste determinations in a timely a fashion as possible. Challenges in waste management have prompted the adoption of innovative solutions. The hand-picked crew (both management and field staff) and the ability to quickly adapt to changing conditions has ensured the success of the project. The current schedule is to complete excavation in July 2000, with follow-on verification sampling, demilitarization, and waste management activities following.
Progress in Photovoltaics
AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.
Journal of Physics B: Atomic, Molecular and Optical Physics
Hydrogen atom-hydrogen atom scattering is a prototype for many of the fundamental principles of atomic collisions. In this paper we present an approximation to the H + H system for scattering in the intermediate energy regime of 1-100 keV. The approximation ignores electron exchange and two-electron excitation by assuming that one of the atoms is frozen in the 1s state. We allow for the evolution of the active electron by numerically solving the 3D Schrodinger equation. This approximation is by nature most appropriate for higher-energy collisions. The results capture many features of the problem and are in harmony with recent theoretical studies. Excitation and ionization cross sections are computed and compared with other theory and experiment. New insight into the mechanism of excitation and ionization is inferred from the solutions.
Chemical Materials
We report on a new method to make nanostructures, in this case selenium nanowires, in aqueous solution at room temperature. We used the protein cytochrome c{sub 3} to reduce selenate (SeO{sub 4}{sup 2{minus}}) to selenium (Se{sup 0}). Cytochrome c{sub 3} is known for its ability to catalyze reduction of metals including U{sup VI} {yields} U{sup IV}, Cr{sup VI} {yields} Cr{sup III}, Mo{sup VI} {yields} Mo{sup IV}, Cu{sup II} {yields} Cu{sup 0}, Pb{sup II} {yields} Pb{sup 0}, Hg{sup II} {yields} Hg{sup 0}. Nanoparticles of Se{sup 0} precipitated from an aqueous solution at room temperature, followed by spontaneous self-assembling into nanowires. Cytochrome c{sub 3} was extracted from the sulfate-reducing bacteria Desulfovibrio vulgaris (strain Holdenborough) and isolated by the procedure of DerVartanian and Legall.
Encyclopedia of Chemical Physics and Physical Chemistry
Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.
A technique has been developed to selectively induce metastable pitting while preventing the transition to stable pit growth. The current-limited imposed-potential (CLIP) technique limits available cathodic current to an initiated site using a resistor in series with the working electrode to form a voltage divider. Potentiodynamic CLIP testing yields a distribution of breakdown potentials from a single experiment. Potentiostatic CLIP testing yields induction time data, which can be used as input to a calculation of germination rate. Initial data indicate that a one-to-one correlation exists between electrochemical transients and observed pitting sites. The CLIP technique provides a consistent means of gathering quantitative potential and current transients associated with localized oxide breakdown.
The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.
A cryogenic, {beta}-layered NIF ignition capsule with a beryllium ablator that employs a BeO dopant (2% O) for opacity control is described. The design has an optimized yield of 12 MJ and uses a ''reduced drive'' hohlraum temperature pulse shape that peaks at {approx}250 eV. Shock timing sensitivity calculations have been performed for this capsule design. Individual uncertainties of (1) {approx}200 ps in the timing of the ''footpulse; (2) {approx}5% in the x-ray flux of the foot pulse and first step; (3) {approx}10% in the ablator EOS; or (4) {approx} 5 {micro}m in the DT ice layer thickness each have a significant impact on thermonuclear yield. Combined uncertainties have greater impact than isolated, individual issues. For example, a combination of uncertainties of: 200 ps in the foot + 2 eV in the foot + 5 pm in the DT thickness results in a calculation that produces only {approx}1% of the original design yield. A second, more speculative, capsule concept utilizing a liquid DT ablator is also discussed. This design produces a 5 MJ yield in a 250 eV peak drive calculation.
Journal of Fusion
Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.
This paper reports on significant advances in electrothermal bent beam actuators. Designs for long throw linear and rotary actuators are described. Silicon p++ devices showed 20--30 {mu}m displacements with 150 {micro}N loads at actuation levels of 6--8 V, and 250--300 mW. An electroplated version provided 15 {mu}m displacements at 0.8 V and 450 mW. Inchworm type devices are reported that had linear displacements of 100 {micro}m with 200 {micro}N loads. Refinements in the modeling to account for non-linear thermal expansion coefficients and buckling are also reported.
Controlled impact methodology has been used on a powdergun to obtain dynamic behavior properties of Tributyl Phosphate (TBP). A novel test methodology is used to provide extremely accurate equation of state data of the liquid. A thin aluminum plate used for confining the liquid also serves as a diagnostic to provide reshock states and subsequent release adiabats from the reshocked state. Polar polymer, polyvinylidene fluoride (PVDF) gauges and velocity interferometer system for any reflector (VISAR) provided redundant and precise data of temporal resolution to five nanoseconds and shock velocity measurements of better than 1%. The design and test methodologies are presented in this paper.
Journal Membrane Science
We report a novel sol-gel dip-coating process to form dual-layer microporous silica membranes with improved membrane performance and reproducibility. First, we deposit a surfactant-templated silica (STS) intermediate layer on top of a commercial {gamma}-alumina support both to improve its ''surface finish'' and to prevent a subsequently deposited microporous overlayer from penetrating into the support. Second, membranes are processed under clean room conditions to avoid dust contamination and, third, membranes are vacuum-calcined to promote further pore shrinkage and impart surface hydrophobicity. The resulting asymmetric membrane exhibits a gradual change in pore diameter from 50{angstrom} ({gamma}-alumina support layer) to 10-12{angstrom} (STS intermediate layer), and then to 3-4{angstrom} (30nm thick, ultramicroporous silica top-layer). Compared to a single-layer process using only the microporous overlayer, the dual-layer process improves both flux and selectivity. For the industrially important problem of natural gas purification, the combined CO{sub 2} flux [(3{approx} 0.5) x 10{sup {minus}4} cm{sup 3}(STP)/(s{center_dot}cm{sup 2}{center_dot}cm-Hg)] and CO{sub 2}/CH{sub 4} separation factors [200{approx}600] are superior to all previously reported values for separation of a 50/50 (v/v) CO{sub 2}/CH{sub 4} gas mixture. In addition, the membrane selectively separated hydrogen from a simulated reformate from partial oxidation of methanol as evidenced by a high concentration of hydrogen recovery.
Macromolecules
{sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.
Macromolecules
Structure within thin epoxy films is investigated by neutron reflectivity (NR) as a function of resin/cross-linker composition and cure temperature. Variation in the cross-link density normal to the substrate surface is examined by swelling the films with the good solvent d-nitrobenzene (d-NB). The principal observation is a large excess of d-NB near the air surface. This is not a wetting layer, but rather indicates a lower cross-link density in the near-surface region. This effect is due to preferential segregation of the cross-linker to the air surface, driven by the lower surface tension of the cross-linker relative to the epoxide oligomers. The magnitude of the effect is a function of composition and cure temperature. Exclusion of d-NB from the region immediately adjacent to the substrate surface is also observed, possibly indicating a tightly bound layer of epoxy. Regarding swelling in the bulk of the films, the behavior is nonsymmetric with departure from the stoichiometric ratio. The films deficient in curing agent show greater equilibrium swelling and faster swelling kinetics than the films with an excess of curing agent.
Applied Physics Letters
Waveguiding by total internal reflection is demonstrated within AlxGa1-xAs semiconductor heterostructures which have been fully oxidized in water vapor at ∼490°C. Refractive index, mode propagation constant, propagation loss (≤ 3 cm-1) at λ0 = 1.3 and 1.55 μm, secondary ion mass spectrometry depth profile, and Fourier transform infrared transmission spectra measurements are presented to characterize a multimode single-heterostructure oxide waveguide. An index contrast of Δn = 0.06 is observed between oxidized x = 0.4 and x = 0.8 AlxGa1-xAs oxide layers. Absorption loss at 1.55 μm is observed due to OH groups. Near-field images are presented showing waveguiding in a single-mode oxide double heterostructure. © 1999 American Institute of Physics.
The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferation monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.
A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than {+-}2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented.
Langmuir
This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C{sub 18}H{sub 37}SiCl{sub 3}) or FDTS (C{sub 8}F{sub 17}C{sub 2}H{sub 4}SiCl{sub 3}) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115{degree}) with water than do ODTS coated beams (112{degree}), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase.
Journal Porphyrins Phthalocyanines
The connection is made between the normal-coordinate structural decomposition (NSD) and the vibronic molecular states and spectra of porphyrins. NSD is a procedure that provides a description of the distortion of a porphyrin from a D{sub 4h} symmetric reference structure in terms of equivalent displacements along the normal coordinates. Expressions for the optical absorption spectra with vibrational structure are developed with these NSD-determined deformations as parameters, and the expressions are applied to the UV-visible absorption spectra porphyrins.
We show that for general input sets linear feedback shift registers (LFSRS) do not provide compression comparable to current, standard algorithms, at least not on the current, standard input files. Rather, LFSRS provide performance on a par with simple, run-length encoding schemes. We exercised three different ways of using LFSRS on the Canterbury, Canterbury Oarge set, the Calgory Corpora, and on three, large graphics files of our own.
Wind-energy researchers at Sandia National Laboratories have developed a new, light-weight, modular data acquisition system capable of acquiring long-term, continuous, multi-channel time-series data from operating wind-turbines. New hardware features have been added to this system to make it more flexible and permit programming via telemetry. User-friendly Windows-based software has been developed for programming the hardware and acquiring, storing, analyzing, and archiving the data. This paper briefly reviews the major components of the system, summarizes the recent hardware enhancements and operating experiences, and discusses the features and capabilities of the software programs that have been developed.
Typical laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, the authors show that introducing compliance in testing setups provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.
Al{sub 2}Cu thin films ({approximately}382 nm) are fabricated by melting and resolidifying Al/Cu bilayers in the presence of a {approximately}3 nm Al{sub 2}O{sub 3} passivating layer. X-ray Photoelectron Spectroscopy (XPS) measures a 1.0 eV shift of the Cu2p{sub 3/2} peak and a 1.6 eV shift of the valence band relative to metallic Cu upon Al{sub 2}Cu formation. Scanning Electron Microscopy (SEM) and Electron Back-Scattered Diffraction (EBSD) show that the Al{sub 2}Cu film is composed of 30--70 {mu}m wide and 10--25 mm long cellular grains with (110) orientation. The atomic composition of the film as estimated by Energy Dispersive Spectroscopy (EDS) is 67{+-}2% Al and 33{+-}2% Cu. XPS scans of Al{sub 2}O{sub 3}/Al{sub 2}Cu taken before and after air exposure indicate that the upper Al{sub 2}Cu layers undergo further oxidation to Al{sub 2}O{sub 3} even in the presence of {approximately}5 nm Al{sub 2}O{sub 3}. The majority of Cu produced from oxidation is believed to migrate below the Al{sub 2}O{sub 3} layers, based upon the lack of evidence for metallic Cu in the XPS scans. In contrast to Al/Cu passivated with Al{sub 2}O{sub 3}, melting/resolidifying the Al/Cu bilayer without Al{sub 2}O{sub 3} results in phase-segregated dendritic film growth.
On rare occasions, the coining of a new term brings new ideas to a field by virtue of a shift in viewpoint. A recent example is complexity, which collected together, from a core of deep results in mathematics and hydrodynamics, a clan of fields whose kinship had been revealed by the new term itself. More often such appellations merely follow fashionable trends. So it took courage on the part of the founders of SUPERMAT to promote their vision. Marcel Ausloos (Universite de Liege, Belgium) and Gilbert Vacquier (Universite de Marseille, France) have shown us a way to resonate as a new chord in materials science. As the first conference on supermaterials, SUPERMAT and its companion SMART 99 have begun to reveal new branches of research from the established pathways explored in superconductivity. At the conclusion of SUPERMAT in Giens, France, the participants were as energized by the exciting science that had been covered during the week as they were impressed by the French food, wine, scenery and hospitality. If the definition of a supermaterial is not obvious now-after the conference-it was certainly not obvious before it. Nevertheless, the conferees were drawn inexorably together by the conference theme. Perhaps it is not appropriate to try to understand this self organization, which surely is even more complex than the self organization of electrons in a high temperature superconductor, the theory for which still eludes us after 13 years! A clue to the working definition of a supermaterial can be derived empirically from the topics that were discussed at SUPERMAT and SMART 99. In addition to superconductors, they heard about magnetic effects of many kinds, including giant and even colossal ones that presumably trump super ones, organic conductors, photoconductors, and even four-hundred-year-old Japanese ceramics. Topics discussed were synthesis, processing, characterization and theory, and applications.
Typical Laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, they show that introducing compliance in testing setups, provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.
Applied Physics Letters
The optical gain spectra for compressive-strained and lattice-matched GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of lasing threshold current density for different GaInNAs/GaAs laser structures. © 1999 American Institute of Physics.
Journal of Microelectromechanical Systems
This work combines focused ion beam sputtering and ultra-precision machining as a first step in fabricating microstructure in metals and alloys. Specifically, {approx}25{micro}m diameter micro-end mills are made from cobalt M42 high-speed steel and C2 micrograin tungsten carbide tool blanks by ion beam sputtering. A 20 keV focused gallium beam defines tool cutting edges having radii of curvature < 0.1{micro}m. Micro-end mills having 2, 4 and 5 cutting edges successfully machine small trenches in 6061-T4 aluminum, brass, 4340 steel and polymethyl methacrylate. Machined trench widths are approximately equal to the tool diameters and surface roughnesses (rms) are {approx}150 nm or less. Microtools are robust and operate for more than 6 hours without fracture. Results from ultra-precision machining aluminum at feed rates as high as 50 mm/minute are included.
Journal of Microelectromechanical Systems
This paper presents techniques for fabricating microscopic, nonplanar features in a variety of materials. Micro-grooving and micro-threading tools having cutting dimensions of 10-30{micro}m are made by focused ion beam sputtering and used in ultra-precision machining. Tool fabrication involves directing a 20 keV gallium beam at polished cylindrical punches made of cobalt M42 high-speed steel or C2 tungsten carbide. This creates cutting edges having radii of curvature less than 0.4 {micro}m, and rake features similar to conventional lathe tools. Clearance for minimizing frictional drag of a tool results from the sputter yield dependence on ion herd target incidence angle. Numerically controlled, ultra-precision machining with micro-grooving tools results in a close matching between tool width and feature size. Microtools controllably machine 13 {micro}m wide, 4 {micro}m deep, helical grooves in polymethyl methacrylate and 6061-T6 Al cylindrical substrates. Micro-grooving tools also fabricate sinusoidal waveform features in polished metal substrates.
Physics of Plasmas
Recent success on the Saturn and Z accelerators at Sandia National Laboratories have demonstrated the ability to scale z-pinch parameters to increasingly larger current pulsed power facilities. Next generation machines will require even larger currents (>20 MA), placing further demands on pulsed power technology. To this end, experiments have been carried out on Saturn operating in a long pulse mode, investigating the potential of lower voltages and longer implosion times while still maintaining pinch fidelity. High wire number, 25 mm diameter tungsten arrays were imploded with implosion times ranging from 130 to 240 ns. The results were comparable to those observed in the Saturn short pulse mode, with risetimes on the order of 4.5 to 6.5 ns. Experimental data will be presented, along with two dimensional radiation magnetohydrodynamic simulations used to explain and reproduce the experiment.
Physical Review E
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wavefronts in reaction diffusion systems. We obtain new results such as the possibility of spatial oscillations in the wavefront shape for certain values of the system parameters and high enough wavefront speeds. We also generalize earlier known results concerning the minimum wavefront speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piece-wise linear representation of the nonlinearity.
New Mexico Business Journal and Kirtland Nucleus
On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.
Applied Physics Letters
The authors have demonstrated a functional Pnp heterojunction bipolar transistor (HBT) using InGaAsN. The metalorganic vapor phase epitaxy (MOCVD) grown Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} HBT takes advantage of the narrower bandgap energy (E{sub g} = 1.25eV) of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}, which is lattice matched to GaAs. Compared with the Al{sub 0.3}Ga{sub 0.7}As/GaAs material system, the Al{sub 0.3}Ga{sub 0.7}As/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} material system has a larger conduction band offset, while the valence band offset remains comparable. This characteristic band alignment is very suitable for Pnp HBT applications. The device's peak current gain is 23 and it has a turn on voltage of 0.77V, which is 0.25V lower than in a comparable Pnp Al{sub 0.3}Ga{sub 0.7}As/GaAs HBT.
Journal of Vacuum Science and Technology A
Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl{sub 2}/BCl{sub 3}/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions ({le} 500 W), pressures {ge}2 mTorr, and at ion energies below approximately -275 V.
Operational Radiation Safety
Numerous sites in the United States and around the world are contaminated with depleted uranium (DU) in various forms. A prevalent form is fragmented DU originating from various scientific tests involving high explosives and DU during weapon-development programs, at firing practice ranges, or in war theaters where DU was used in armor-piercing projectiles. The contamination at these sites is typically very heterogeneous, with discrete, visually identifiable DU fragments mixed with native soil. The bulk-averaged DU activity is quite low, whereas DU fragments, which are distinct from the soil matrix, have much higher specific activity. DU is best known as a dark metal that is nearly twice as dense as lead, but DU in the environment readily weathers (oxidizes) to a distinctive bright yellow color that is quite visible. While the specific activity (amount of radioactivity per mass of soil) of DU is relatively low and presents only a minor radiological hazard, the fact that DU is radioactive and visually identifiable makes it desirable to remove the DU ''contamination'' from the environment. The typical approach to conducting this DU remediation is to use radiation-detection instruments to identify the contaminant and then to separate it from the adjacent soil, packaging it for disposal as radioactive waste. This process can be performed manually or by specialized, automated equipment. Alternatively, a more cost-effective approach might be simple mechanical or gravimetric separation of the DU fragments from the host soil matrix. At SNL/NM, both the automated and simple mechanical approaches have recently been employed. This paper discusses the pros/cons of the two approaches.
This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where direct measurement is not technically feasible, from accumulated PK of the excavated materials.
Since the mid-1980's, there have been a number of commercially available parallel computers with hundreds or thousands of processors. These machines have provided a new capability to the scientific community, and they been used successfully by scientists and engineers although with varying degrees of success. One of the reasons for the limited success is the difficulty, or perceived difficulty, in developing code for these machines. In this paper we discuss many of the issues and challenges in developing scalable hardware, system software and algorithms for machines comprising hundreds or thousands of processors.
The history of high consequence accidents is rich with events wherein the actions, or inaction, of humans was critical to the sequence of events preceding the accident. Moreover, it has been reported that human error may contribute to 80% of accidents, if not more (dougherty and Fragola, 1988). Within the safety community, this reality is widely recognized and there is a substantially greater awareness of the human contribution to system safety today than has ever existed in the past. Despite these facts, and some measurable reduction in accident rates, when accidents do occur, there is a common lament. No matter how hard we try, we continue to have accidents. Accompanying this lament, there is often bewilderment expressed in statements such as, ''There's no explanation for why he/she did what they did''. It is believed that these statements are a symptom of inadequacies in how they think about humans and their role within technological systems. In particular, while there has never been a greater awareness of human factors, conceptual models of human involvement in engineered systems are often incomplete and in some cases, inaccurate.
We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo.
This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total {Delta}V of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years.
Kuiper Belt Objects (KBOs) are a recently-discovered set of solar system bodies which lie at about the orbit of Pluto (40 AU) out to about 100 astronomical units (AU). There are estimated to be about 100,000 KBOS with a diameter greater than 100 km. KBOS are postulated to be composed of the pristine material which formed our solar system and may even have organic materials in them. A detailed study of KBO size, orbit distribution, structure, and surface composition could shed light on the origins of the solar system and perhaps even on the origin of life in our solar system. A rendezvous mission including a lander would be needed to perform chemical analysis of the surface and sub-surface composition of KBOS. These requirements set the size of the science probe at around a ton. Mission analyses show that a fission-powered system with an electric thruster could rendezvous at 40 AU in about 13.0 years with a total {Delta}V of 46 krnk. It would deliver a 1000-kg science payload while providing ample onboard power for relaying data back to earth. The launch mass of the entire system (power, thrusters, propellant, navigation, communication, structure, science payload, etc.) would be 7984 kg if it were placed into an earth-escape trajectory (C=O). Alternatively, the system could be placed into a 700-km earth orbit with more propellant,yielding a total mass in LEO of 8618 kg, and then spiral out of earth orbit to arrive at the KBO in 14.3 years. To achieve this performance, a fission power system with 100 kW of electrical power and a total mass (reactor, shield, conversion, and radiator) of about 2350 kg. Three possible configurations are proposed: (1) a UZrH-fueled, NaK-cooled reactor with a steam Rankine conversion system, (2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heatpipe-cooled reactor with a recuperated Brayton conversion system. (Boiling and condensation in the Rankine system is a technical risk at present.) All three of these systems have the potential to meet the weight requirement for the trip and to be built in the near term.
The paper describes a methodology for designing a web site for human factor engineers that is applicable for designing a web site for a group of people. Many web pages on the World Wide Web are not organized in a format that allows a user to efficiently find information. Often the information and hypertext links on web pages are not organized into intuitive groups. Intuition implies that a person is able to use their knowledge of a paradigm to solve a problem. Intuitive groups are categories that allow web page users to find information by using their intuition or mental models of categories. In order to improve the human factors engineers efficiency for finding information on the World Wide Web, research was performed to develop a web site that serves as a tool for finding information effectively. The paper describes a methodology for designing a web site for a group of people who perform similar task in an organization.
Precision Engineering, American Society for Precision Engineering (ASPE)
Over the last decade, multi-axis machine tools and robots based on parallel kinematic mechanisms (PKMs) have been developed and marketed worldwide. Positional accuracy in these machines is controlled by accurate knowledge of the kinematic parameters which consists of the joint center locations and distances between joint pairs. Since these machines tend to be rather large in size, the kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. Work recently completed by the University of Florida and Sandia National Laboratories has yielded a method for determining all of the kinematic parameters of an assembled parallel kinematic device. This paper contains a brief synopsis of the calibration method created, an error budget, an uncertainty analysis for the recovered kinematic parameters and the propagation of these uncertainties to the tool tip.
IEEE Photonics Technology Letters
We report spurious-free dynamic-range measurements of 850-nm vertical-cavity surface-emitting lasers in short multimode links for radio frequency communication. For a 27-m fiber link, the dynamic range at optimal bias was greater than 95 dB·Hz2/3 for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free-space link, we have measured the highest dynamic range in an 850-nm vertical-cavity surface-emitting laser of 113 dB·Hz2/3 at 900 MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.
Defects in silicon-on-insulator (SOI) buried oxides are normally considered deleterious to device operation. Similarly, exposing devices to hydrogen at elevated temperatures often can lead to radiation-induced charge buildup. However, in this work, we take advantage of as-processed defects in SOI buried oxides and moderate temperature hydrogen anneals to generate mobile protons in the buried oxide to form the basis of a ''protonic'' nonvolatile memory. Capacitors and fully-processed transistors were fabricated. SOI buried oxides are exposed to hydrogen at moderate temperatures using a variety of anneal conditions to optimize the density of mobile protons. A fast ramp cool down anneal was found to yield the maximum number of mobile protons. Unfortunately, we were unable to obtain uniform mobile proton concentrations across a wafer. Capacitors were irradiated to investigate the potential use of protonic memories for space and weapon applications. Irradiating under a negative top-gate bias or with no applied bias was observed to cause little degradation in the number of mobile protons. However, irradiating to a total dose of 100 krad(SiO{sub 2}) under a positive top-gate bias caused approximately a 100% reduction in the number of mobile protons. Cycling capacitors up to 10{sup 4} cycles had little effect on the switching characteristics. No change in the retention characteristics were observed for times up to 3 x 10{sup 4} s for capacitors stored unbiased at 200 C. These results show the proof-of-concept for a protonic nonvolatile memory. Two memory architectures are proposed for a protonic non-destructive, nonvolatile memory.
Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Salinas. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
The desire to provide a measure of computer network availability at Sandia National Laboratories has existed for along time. Several attempts were made to build this measure by accurately recording network failures, identifying the type of network element involved, the root cause of the problem, and the time to repair the fault. Recognizing the limitations of available methods, it became obvious that another approach of determining network availability had to be defined. The chosen concept involved the periodic sampling of network services and applications from various network locations. A measure of ''network'' availability was then calculated based on the ratio of polling success to failure. The effort required to gather the information and produce a useful metric is not prohibitive and the information gained has verified long held feelings regarding network performance with real data.
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
The end of the Cold War finds the international community no longer divided into two opposing blocks. The concerns that the community now faces are becoming more fluid, less focused, and, in many ways, much less predictable. Issues of religion, ethnicity, and nationalism; the possible proliferation of Weapons of Mass Destruction; and the diffusion of technology and information processing throughout the world community have greatly changed the international security landscape in the last decade. Although our challenges appear formidable, the United Nations, State Parties, nongovernmental organizations, and the arms control community are moving to address and lessen these concerns through both formal and informal efforts. Many of the multilateral agreements (e.g., NPT, BWC, CWC, CTBT, MTCR), as well as the bilateral efforts that are taking place between Washington and Moscow employ confidence-building and transparency measures. These measures along with on-site inspection and other verification procedures lessen suspicion and distrust and reduce uncertainty, thus enhancing stability, confidence, and cooperation.
In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.
The System of Labs Direct Fabrication Technology program was intended to foster cooperation and development in a cooperative effort between Sandia National Labs, Idaho National Energy and Environment Lab and Oak Ridge National Lab. The goal of this program was to bring together LENS (Laser Engineered Net Shaping) from Sandia, INEEL's spray forming process and the alloy development expertise of ORNL. This program investigated the feasibility of combining the LENS and spray forming processes to exploit the best features of both approaches. Further, since both processes were thought to result in a rapidly solidified structure, the alloy design expertise of ORNL offered the opportunity for alloy design or processing options which could more fully utilize the unique capabilities of the processes.
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that many boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.
Predicting the behavior of ion channel proteins is important for understanding biological effects of drugs and toxins. These problems involve steady state transport of ions through very small (1-2 atoms wide) pores. FY99 LDRD funding was used to begin investigations of ion channel proteins using a molecular theory approach. Much of our efforts involved establishing the soundness of the approach by direct comparison with grand canonical molecular dynamics simulations of simple model systems. In addition, several dimensional ion channel models have been implemented to demonstrate the viability of the approach, The seed funding provided by this LDRD grant resulted in 50K of DOWOBER funds for FY99, an invitation to submit a full length 0(500K) proposal for consideration to DOWOBER, and start a larger LDRD effort in computational biophysics beginning in FY00.
Estimation of the potential radiological risks associated with highway transport of radioactive materials (RAM) requires input data describing population densities adjacent to all portions of the route to be traveled. Previously, aggregated risks for entire multi-state routes were adequately estimated from population data with low geographic resolution. Current demands for geographically-specific risk estimates require similar increases in resolution of population density adjacent to route segments. With the advent of commercial geographic information systems (GISs) and databases describing highways, U.S. Census Blocks, and other information that is geographically distributed, it became feasible to determine and tabulate population characteristics along transportation routes with 1-kilometer resolution. This report describes an automated method of collecting population data adjacent to route segments (for calculation of incident-free doses) based on a commercial GIS. It also describes a statistical method of resolving remaining resolution issues, and an adaptation of the automation method to collection of data on population under a hypothetical plume of contamination resulting from a potential transportation accident.
Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132{degree} rather than the typical 90{degree}. The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5 {micro}m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components.
The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam which contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.
Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.
As model validation techniques gain more acceptance and increase in power, the demands on the modal parameter extractions increase. The estimation accuracy, the number of modes desired, and the data reduction efficiency are required features. An algorithm known as SMAC (Synthesize Modes And Correlate), based on principles of modal filtering, has been in development for a few years. SMAC has now been extended in two main areas. First, it has now been automated. Second, it has been extended to fit complex modes as well as real modes. These extensions have enhanced the power of modal extraction so that, typically, the analyst needs to manually fit only 10 percent of the modes in the desired bandwidth, whereas the automated routines will fit 90 percent of the modes. SMAC could be successfully automated because it generally does not produce computational roots.
Direct metal deposition technologies produce complex, near net shape components from Computer Aided Design (CAD) solid models. Most of these techniques fabricate a component by melting powder in a laser weld pool, rastering the weld bead to form a layer, and additively constructing subsequent layers. This report will describe anew direct metal deposition process, known as WireFeed, whereby a small diameter wire is used instead of powder as the feed material to fabricate components. Currently, parts are being fabricated from stainless steel alloys. Microscopy studies show the WireFeed parts to be filly dense with fine microstructural features. Mechanical tests show stainless steel parts to have high strength values with retained ductility. A model was developed to simulate the microstructural evolution and coarsening during the WireFeed process. Simulations demonstrate the importance of knowing the temperature distribution during fabrication of a WireFeed part. The temperature distribution influences microstructural evolution and, therefore, must be controlled to tailor the microstructure for optimal performance.
Development of bug-free, high-surety, complex software is quite difficult using current tools. The brittle nature of the programming constructs in popular languages such as C/C++ is one root cause. Brittle commands force the designer to rigidly specify the minutiae of tasks, e.g. using ''for(index=0;index>total;index++)'', rather than specifying the goals or intent of the tasks, e.g. ''ensure that all relevant data elements have been examined''. Specification of task minutiae makes code hard to comprehend, which in turn encourages design errors/limitations and makes future modifications quite difficult. This report describes an LDRD project to seed the development of a surety computer language, for stand-alone computing environments, to be implemented using the swarm intelligence of autonomous agents. The long term vision of this project was to develop a language with the following surety capabilities: (1) Reliability -- Autonomous agents can appropriate y decide when to act and when a task is complete, provide a natural means for avoiding brittle task specifications, and can overcome many hardware glitches. (2) Safety, security -- Watchdog safety and security agents can monitor other agents to prevent unauthorized or dangerous actions. (3) An immune system -- The small chunks of agent code can have an encryption scheme to enable detection and elimination of unauthorized and corrupted agents. This report describes the progress achieved during this small 9 month project and describes lessons learned.
Current supercomputers use large parallel arrays of tightly coupled processors to achieve levels of performance far surpassing conventional vector supercomputers. Shock-wave physics codes have been developed for these new supercomputers at Sandia National Laboratories and elsewhere. These parallel codes run fast enough on many simulations to consider using them to study the effects of varying design parameters on the performance of models of conventional munitions and other complex systems. Such studies maybe directed by optimization software to improve the performance of the modeled system. Using a shaped-charge jet design as an archetypal test case and the CTH parallel shock-wave physics code controlled by the Dakota optimization software, we explored the use of automatic optimization tools to optimize the design for conventional munitions. We used a scheme in which a lower resolution computational mesh was used to identify candidate optimal solutions and then these were verified using a higher resolution mesh. We identified three optimal solutions for the model and a region of the design domain where the jet tip speed is nearly optimal, indicating the possibility of a robust design. Based on this study we identified some of the difficulties in using high-fidelity models with optimization software to develop improved designs. These include developing robust algorithms for the objective function and constraints and mitigating the effects of numerical noise in them. We conclude that optimization software running high-fidelity models of physical systems using parallel shock wave physics codes to find improved designs can be a valuable tool for designers. While current state of algorithm and software development does not permit routine, ''black box'' optimization of designs, the effort involved in using the existing tools may well be worth the improvement achieved in designs.
This report documents the use of the FITS routine, which provides automated fits of various analytical, commonly used probability models from input data. It is intended to complement the previously distributed FITTING routine documented in RMS Report 14 (Winterstein et al., 1994), which implements relatively complex four-moment distribution models whose parameters are fit with numerical optimization routines. Although these four-moment fits can be quite useful and faithful to the observed data, their complexity can make them difficult to automate within standard fitting algorithms. In contrast, FITS provides more robust (lower moment) fits of simpler, more conventional distribution forms. For each database of interest, the routine estimates the distribution of annual maximum response based on the data values and the duration, T, over which they were recorded. To focus on the upper tails of interest, the user can also supply an arbitrary lower-bound threshold, {chi}{sub low}, above which a shifted distribution model--exponential or Weibull--is fit.
Path integral Monte Carlo simulations and calculations were performed on molecular hydrogen liquids. The equation-of-state, internal energies, and vapor liquid phase diagrams from simulation were found to be in quantitative agreement with experiments. Analytical calculations were performed on,H2 liquids using integral equation methods to study the degree of localization of the hydrogen molecules. Very little self-trapping or localization was found as a function of temperature and density. Good qualitative agreement was found between the integral equation calculations and the quantum Monte Carlo simulations for the radius of gyration of the hydrogen molecules. Path integral simulations were also performed on molecular hydrogen on graphite surfaces, slit pores, and in carbon nanotubes. Significant quantum effects on the adsorption of hydrogen were observed.
Thermionic energy conversion in a microminiature format shows potential as a viable, high efficiency, on-chip power source. Microminiature thermionic converters (MTC) with inter-electrode spacings on the order of microns are currently being prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes than can be integrated into these converters. In this report, the authors demonstrate a method of incorporating thin film emitters into converters using rf sputtering. They find that the resultant films possess a minimum work function of 1.2 eV. Practical energy conversion is hindered by surface work function non-uniformity. They postulate the source of this heterogeneity to be a result of limited bulk and surface transport of barium. Several methods are proposed for maximizing transport, including increased film porosity and the use of metal terminating layers. They demonstrate a novel method for incorporating film porosity based on metal interlayer coalescence.
Abstract not provided.
Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.
IEEE Transactions on Plasma Science
Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.
The Journal of Chemical Physics
Simple tangent, hard site chains near a hard wall are modeled with a Density Functional (DF) theory that uses the direct correlation function, c(r), as its ''input''. Two aspects of this DF theory are focused upon: (1) the consequences of variations in c(r)'s detailed form; and (2) the correct way to introduce c(r) into the DF formalism. The most important aspect of c(r) is found to be its integrated value, {cflx c}(0). Indeed, it appears that, for fixed {cflx c}(0), all reasonable guesses of the detailed shape of c(r) result in surprisingly similar density distributions, {rho}(r). Of course, the more accurate the c(r), the better the {rho}(r). As long as the length scale introduced by c(r) is roughly the hard site diameter and as long as the solution remains liquid-like, the {rho}(r) is found to be in good agreement with simulation results. The c(r) is used in DF theory to calculate the medium-induced-potential, U{sub M}(r) from the density distribution, {rho}(r). The form of U{sub M}(r) can be chosen to be one of a number of different forms. It is found that the forms for U{sub M}(r), which yield the most accurate results for the wall problem, are also those which were suggested as accurate in previous, related studies.
Solid freeform fabrication is the near-net-shape manufacturing of components by sequentially stacking thin layers of material until complicated three dimensional shapes are produced. The operation is computer controlled and requires no molds. This exciting new field of technology provides engineers with the ability to rapidly produce prototype parts directly from CAD drawings and oftentimes little or no machining is necessary after fabrication. Techniques for freeform fabrication with several types of plastics and metals are already quite advanced and maybe reviewed in references 1 and 2. Very complicated plastic models can be fabricated by stereolithography, selective laser sintering, fused deposition modeling, or three-dimensional ink jet printing. Metals may be freeformed by the LENS{trademark} technique and porous ceramic bodies by three dimensional printing into a porous powder bed. However, methods for freeform fabrication that utilize particulate slurries to build dense ceramics and composites are not as well developed. The techniques that are being developed for the freeform fabrication of dense structural ceramics primarily revolve around the sequential layering of ceramic loaded polymers or waxes. Laminated Object Manufacturing and CAM-LEM processing use controlled stacking and laser cutting of ceramic tapes [2,3]. Similar to fused deposition modeling, ceramic loaded polymer/wax filaments are being used for the fused deposition of ceramics [2,4]. Extrusion freeform fabrication uses high pressure extrusion to deposit layers of ceramic loaded polymer/wax systems[1]. Modified stereolithographic techniques are also being developed using ceramic loaded ultraviolet curable resins [2]. Pre-sintered parts made with any of these techniques typically have 40-55 vol.% polymeric binder. In this regard, these techniques are analogous to powder injection molding of ceramics. Very long and complicated burnout heat treatments are necessary to produce a dense ceramic, free of organics. Heating rates of 0.2 degrees Celsius per minute are common. [5] Thus, while a part maybe rapidly prototype within a few hours, it takes several days to densify. In contrast, robocasting is a freeform fabrication technique developed at Sandia National Labs that utilizes particulate slurries but does not require organic binders. Since binder burnout is not an issue, a dense ceramic part maybe freeformed, dried, and sintered in less than 24 hours. In some regards, robocasting is analogous to the ceramic near-net-shape processing techniques, slip casting and gel casting [6]; however, robocasting is moldless and fabrication times can be quicker.
Device penetration into media such as metal and soil is an application of some engineering interest. Often, these devices contain internal components and it is of paramount importance that all significant components survive the severe environment that accompanies the penetration event. In addition, the system must be robust to perturbations in its operating environment, some of which exhibit behavior which can only be quantified to within some level of uncertainty. In the analysis discussed herein, methods to address the reliability of internal components for a specific application system are discussed. The shock response spectrum (SRS) is utilized in conjunction with the Advanced Mean Value (AMV) and Response Surface methods to make probabilistic statements regarding the predicted reliability of internal components. Monte Carlo simulation methods are also explored.
The Jorunal of Chemical Physics
Previous applications of DF theory required a single chain Monte Carlo simulation to be performed within a self-consistent loop. In the current work, a methodology is developed which permits the simulation to be taken out of the iterative loop. Consequently, the calculation of the self-consistent, medium-induced-potential, or field, is decoupled from the simulation. This approach permits different densities, different forms of U{sub M}(r), and different wall-polymer interactions to be investigated from a single Monte Carlo simulation. The increase in computational efficiency is immense.
In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''
Minimum-time trajectory tracking of an under-actuated mechanical system called the Acrobot is presented. The success of the controller is demonstrated by the fact that the tracking error is reduced by more than an order of magnitude when compared to the open-loop system response. The control law is obtained by linearizing the system about the nominal trajectory and applying differential dynamic programming to the resulting linear time-varying system, while using a weighted sum of the state-deviation and input-deviation as the cost function.
A study to characterize the low-temperature reactive processes for o-AP and an AP/HTPB-based propellant (class 1.3) is being conducted in the laboratory using the techniques of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and scanning electron microscopy (SEM). The results presented in this paper are a follow up of the previous work that showed the overall decomposition to be complex and controlled by both physical and chemical processes. The decomposition is characterized by the occurrence of one major event that consumes up to {approx}35% of the AP, depending upon particle size, and leaves behind a porous agglomerate of AP. The major gaseous products released during this event include H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl. The recent efforts provide further insight into the decomposition processes for o-AP. The temporal behaviors of the gas formation rates (GFRs) for the products indicate that the major decomposition event consists of three chemical channels. The first and third channels are affected by the pressure in the reaction cell and occur at the surface or in the gas phase above the surface of the AP particles. The second channel is not affected by pressure and accounts for the solid-phase reactions characteristic of o-AP. The third channel involves the interactions of the decomposition products with the surface of the AP. SEM images of partially decomposed o-AP provide insight to how the morphology changes as the decomposition progresses. A conceptual model has been developed, based upon the STMBMS and SEM results, that provides a basic description of the processes. The thermal decomposition characteristics of the propellant are evaluated from the identities of the products and the temporal behaviors of their GFRs. First, the volatile components in the propellant evolve from the propellant as it is heated. Second, the hot AP (and HClO{sub 4}) at the AP-binder interface oxidize the binder through reactions that preferentially strip the hydrogen from the binder and yield HCl and H{sub 2}O with some oxidation of the carbon from the binder. Third, the o-AP in the propellant decomposes in the same manner as in neat o-AP. Finally, AP-derived gaseous products interact with other ingredients in the propellant.
A set of linear and nonlinear stability analysis tools have been developed to analyze steady state incompressible flows in 3D geometries. The algorithms have been implemented to be scalable to hundreds of parallel processors. The linear stability of steady state flows are determined by calculating the rightmost eigenvalues of the associated generalize eigenvalue problem. Nonlinear stability is studied by bifurcation analysis techniques. The boundaries between desirable and undesirable operating conditions are determined for buoyant flow in the rotating disk CVD reactor.
IEEE Transaction Electronic Devices
Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.
The topic of Privacy is complex, multi-faceted, and often emotionally laden. This paper will cover the following topics, in an effort to further understanding of federal regulations and activities, the balancing act that necessarily occurs in business, and what role a records manager can play. The topics are: Definitions; The Privacy Act; ''Private'' companies; Potential areas of concern; Expectations; Corporate responsibilities; Case studies; and Records Manager's role.
The non-linear stress-strain relation for crosslinked polymer networks is studied using molecular dynamics simulations. Previously we demonstrated the importance of trapped entanglements in determining the elastic and relaxational properties of networks. Here we present new results for the stress versus strain for both dry and swollen networks. Models which limit the fluctuations of the network strands like the tube model are shown to describe the stress for both elongation and compression. For swollen networks, the total modulus is found to decrease like (V{sub o}/V){sup 2/3} and goes to the phantom model result only for short strand networks.
Journal of Chemical Physics
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Journal of Vacuum Science and Technology
Magnesium vanadates are potentially important catalytic materials for the conversion of alkanes to alkenes via oxidative dehydrogenation. However, little is known about the active sites at which the catalytic reactions take place. It may be possible to obtain a significant increase in the catalytic efficiency if the effects of certain material properties on the surface reactions could be quantified and optimized through the use of appropriate preparation techniques. Given that surface reactivity is often dependent upon surface structure and that the atomic level structure of the active sites in these catalysts is virtually unknown, we desire thin film samples consisting of a single magnesium vanadate phase and a well defined crystallographic orientation in order to reduce complexity and simplify the study of active sites. We report on the use of reactive RF sputter deposition to fabricate very highly oriented, stoichiometric Mg{sub 3}(VO{sub 4}){sub 2} thin films for use in these surface analysis studies. Deposition of samples onto amorphous substrates resulted in very poor crystallinity. However, deposition of Mg{sub 3}(VO{sub 4}){sub 2} onto well-oriented, lattice-matched thin film ''seed'' layers such as Ti(0001), Au(111), or Pt(111) resulted in very strong preferential (042) crystallographic orientation (pseudo-hexagonal oxygen planes parallel to the substrate). This strong preferential growth of the Mg{sub 3}VO{sub 4}{sub 2} suggests epitaxial (single-crystal) growth of this mixed metal oxide on the underlying metal seed layer. The effects of the seed layer material, deposition temperature, and post-deposition reactive treatments on thin film properties such as stoichiometry, crystallographic orientation, and chemical interactions will be discussed.
Journal of Contaminant Hydrology
A range of pore diffusivities, D{sub p}, is implied by the high degree of pore-scale heterogeneity observed in core samples of the Culebra (dolomite) Member of the Rustler formation, NM. Earlier tracer tests in the culebra at the field-scale have confirmed significant heterogeneity in diffusion rate coefficients (the combination of D{sub p} and matrix block size). In this study, expressions for solute diffusion in the presence of multiple simultaneous matrix diffusivities are presented and used to model data from eight laboratory-scale diffusion experiments performed on five Culebra samples. A lognormal distribution of D{sub p} is assumed within each of the lab samples. The estimated standard deviation ({sigma}{sub d}) of In(D{sub p}) within each sample ranges from 0 to 1, with most values lying between 0.5 and 1. The variability over all samples leads to a combined {sigma}{sub d} in the range of 1.0 to 1.2, which appears to be consistent with a best-fit statistical distribution of formation factor measurements for similar Culebra samples. A comparison of the estimation results to other rock properties suggests that, at the lab-scale, the geometric mean of D{sub p} increases with bulk porosity and the quantity of macroscopic features such as vugs and fractures. However, {sigma}{sub d} appears to be determined by variability within such macroscopic features and/or by micropore-scale heterogeneity. In addition, comparison of these experiments to those at larger spatial scales suggests that increasing sample volume results in an increase in {sigma}{sub d}.
IEEE Internet Computing
Reliability Engineering and System Safety
In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the U.S. Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a Research and development facility for the safe management storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and after site selection, the U.S. Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance. assessment conducted in 1996, which is summarized in this special issue of Reliability Engineering and System Safety. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This paper provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project.
MST News (Germany)
Paul McWhorter, Deputy Director for of the Microsystems Center at Sandia National Laboratories, discusses the potential of surface micromachining. A vision of the possibilities of intelligent Microsystems for the future is presented along with descriptions of several possible applications. Applications that are just around the corner and some that maybe quite a ways down the road but have a clear development path to their realization. Microsystems will drive the next silicon revolution.
We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS{sub 2} couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS{sub 2} thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment.
The performance of Li-alloy/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm{sup 2} using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} system exhibited thermal runaway. Thermal analytical tests showed that the Ag{sub 2}CrO{sub 4} cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications.
The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated.
A motion planning strategy was developed and implemented to generate motion control instructions from solid model data for controlling a robotically driven solid free-form fabrication process. The planning strategy was tested using a PUMA type robot arm integrated into a LENS{trademark} (Laser Engineered Net Shape) system. Previous systems relied on a series of x, y, and z stages, to provide a minimal coordinated motion control capability. This limited the complexity of geometries that could be constructed. With the coordinated motion provided by a robotic arm, the system can produce three dimensional parts by ''writing'' material onto any face of existing material. The motion planning strategy relied on solid model geometry evaluation and exploited robotic positioning flexibility to allow the construction of geometrically complex parts. The integration of the robotic manipulator into the LENS{trademark} system was tested by producing metal parts directly from CAD models.
The emerging field of haptics represents a fundamental change in human-computer interaction (HCI), and presents solutions to problems that are difficult or impossible to solve with a two-dimensional, mouse-based interface. To take advantage of the potential of haptics, however, innovative interaction techniques and programming environments are needed. This paper describes FGB (FLIGHT GHUI Builder), a programming tool that can be used to create an application specific graphical and haptic user interface (GHUI). FGB is itself a graphical and haptic user interface with which a programmer can intuitively create and manipulate components of a GHUI in real time in a graphical environment through the use of a haptic device. The programmer can create a GHUI without writing any programming code. After a user interface is created, FGB writes the appropriate programming code to a file, using the FLIGHT API, to recreate what the programmer created in the FGB interface. FGB saves programming time and increases productivity, because a programmer can see the end result as it is created, and FGB does much of the programming itself. Interestingly, as FGB was created, it was used to help build itself. The further FGB was in its development, the more easily and quickly it could be used to create additional functionality and improve its own design. As a finished product, FGB can be used to recreate itself in much less time than it originally required, and with much less programming. This paper describes FGB's GHUI components, the techniques used in the interface, how the output code is created, where programming additions and modifications should be placed, and how it can be compared to and integrated with existing API's such as MFC and Visual C++, OpenGL, and GHOST.