Publications

156 Results

Search results

Jump to search filters

Mining experimental magnetized liner inertial fusion data: Trends in stagnation morphology

Physics of Plasmas

Foulk, James W.; Yager-Elorriaga, David A.; Jennings, Christopher A.; Fein, Jeffrey R.; Shipley, Gabriel A.; Porwitzky, Andrew J.; Awe, Thomas J.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Knapp, Patrick F.; Mannion, Owen M.; Ruiz, Daniel E.; Schaeuble, Marc-Andre S.; Slutz, Stephen A.; Weis, Matthew R.; Woolstrum, Jeffrey M.; Ampleford, David J.; Shulenburger, Luke N.

More Details

Three-dimensional reconstruction of x-ray emission volumes in magnetized liner inertial fusion from sparse projection data using a learned basis

Journal of Applied Physics

Fein, Jeffrey R.; Harding, Eric H.; Foulk, James W.; Weis, Matthew R.; Schaeuble, Marc-Andre S.

The ability to visualize x-ray and neutron emission from fusion plasmas in 3D is critical to understand the origin of the complex shapes of the plasmas in experiments. Unfortunately, this remains challenging in experiments that study a fusion concept known as Magnetized Liner Inertial Fusion (MagLIF) due to a small number of available diagnostic views. Here, we present a basis function-expansion approach to reconstruct MagLIF stagnation plasmas from a sparse set of x-ray emission images. A set of natural basis functions is “learned” from training volumes containing quasi-helical structures whose projections are qualitatively similar to those observed in experimental images. Tests on several known volumes demonstrate that the learned basis outperforms both a cylindrical harmonic basis and a simple voxel basis with additional regularization, according to several metrics. Two-view reconstructions with the learned basis can estimate emission volumes to within 11% and those with three views recover morphology to a high degree of accuracy. The technique is applied to experimental data, producing the first 3D reconstruction of a MagLIF stagnation column from multiple views, providing additional indications of liner instabilities imprinting onto the emitting plasma.

More Details

X-ray self-emission imaging with spherically bent Bragg crystals on the Z-machine

Review of Scientific Instruments

Robertson, G.K.; Dunham, G.S.; Gomez, Matthew R.; Fein, Jeffrey R.; Knapp, P.F.; Harvey-Thompson, Adam J.; Speas, Christopher S.; Ampleford, David J.; Rochau, G.A.; Maron, Y.; Doron, R.; Harding, Eric H.

An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.

More Details

Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform

Review of Scientific Instruments

Harvey-Thompson, Adam J.; Geissel, Matthias; Crabtree, J.A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Foulk, James W.; Ampleford, David J.; Awe, Thomas J.; Chandler, Gordon A.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, P.F.; Kimmel, Mark; Mangan, Michael A.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Daniel E.; Hanson, J.; Harding, Eric H.; Perea, L.; Robertson, G.K.; Shores, Jonathon; Slutz, Stephen A.; Smith, G.E.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, A.

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

More Details

Radiation, optical, power flow, and electrical diagnostics at the Z facility: Layout and techniques utilized to operate in the harsh environment

Review of Scientific Instruments

Webb, Timothy J.; Bliss, David E.; Chandler, Gordon A.; Foulk, James W.; Dunham, G.S.; Edens, Aaron; Harding, Eric H.; Johnston, Mark D.; Jones, Michael; Mangan, Michael A.; Mccoy, Chad A.; Maurer, Andrew J.; Steiner, Adam M.; Wu, Ming; Yager-Elorriaga, David A.; Yates, Kevin C.

The Z machine is a current driver producing up to 30 MA in 100 ns that utilizes a wide range of diagnostics to assess accelerator performance and target behavior conduct experiments that use the Z target as a source of radiation or high pressures. Here, we review the existing suite of diagnostic systems, including their locations and primary configurations. The diagnostics are grouped in the following categories: pulsed power diagnostics, x-ray power and energy, x-ray spectroscopy, x-ray imaging (including backlighting, power flow, and velocimetry), and nuclear detectors (including neutron activation). We will also briefly summarize the primary imaging detectors we use at Z: image plates, x-ray and visible film, microchannel plates, and the ultrafast x-ray imager. The Z shot produces a harsh environment that interferes with diagnostic operation and data retrieval. We term these detrimental processes “threats” of which only partial quantifications and precise sources are known. Finally, we summarize the threats and describe techniques utilized in many of the systems to reduce noise and backgrounds.

More Details

Statistical characterization of experimental magnetized liner inertial fusion stagnation images using deep-learning-based fuel–background segmentation

Journal of Plasma Physics

Foulk, James W.; Knapp, P.F.; Harding, Eric H.; Beckwith, Kristian

Significant variety is observed in spherical crystal x-ray imager (SCXI) data for the stagnated fuel–liner system created in Magnetized Liner Inertial Fusion (MagLIF) experiments conducted at the Sandia National Laboratories Z-facility. As a result, image analysis tasks involving, e.g., region-of-interest selection (i.e. segmentation), background subtraction and image registration have generally required tedious manual treatment leading to increased risk of irreproducibility, lack of uncertainty quantification and smaller-scale studies using only a fraction of available data. We present a convolutional neural network (CNN)-based pipeline to automate much of the image processing workflow. This tool enabled batch preprocessing of an ensemble of Nscans = 139 SCXI images across Nexp = 67 different experiments for subsequent study. The pipeline begins by segmenting images into the stagnated fuel and background using a CNN trained on synthetic images generated from a geometric model of a physical three-dimensional plasma. The resulting segmentation allows for a rules-based registration. Our approach flexibly handles rarely occurring artifacts through minimal user input and avoids the need for extensive hand labelling and augmentation of our experimental dataset that would be needed to train an end-to-end pipeline. We also fit background pixels using low-degree polynomials, and perform a statistical assessment of the background and noise properties over the entire image database. Our results provide a guide for choices made in statistical inference models using stagnation image data and can be applied in the generation of synthetic datasets with realistic choices of noise statistics and background models used for machine learning tasks in MagLIF data analysis. We anticipate that the method may be readily extended to automate other MagLIF stagnation imaging applications.

More Details

Magnetically Ablated Reconnection on Z (MARZ) collaboration

Hare, Jack; Datta, Rishabh; Lebedev, Sergey; Chittenden, Jeremy P.; Crilly, Aidan; Halliday, Jack; Chandler, Katherine M.; Jennings, Christopher A.; Ampleford, David J.; Bland, Simon; Aragon, Carlos; Yager-Elorriaga, David A.; Hansen, Stephanie B.; Shipley, Gabriel A.; Webb, Timothy J.; Harding, Eric H.; Robertson, G.K.; Montoya, Michael M.; Kellogg, Jeffrey; Harmon, Roger; Molina, Leo

Abstract not provided.

Magnetized High-Energy-Density Plasma Experiments at MIT

Hare, Jack; Datta, Rishabh; Varnish, Thomas; Lebedev, Sergey; Jerry, Chittenden; Crilly, Aidan; Halliday, Jack; Russell, Danny; Chandler, Katherine M.; Fox, Will; Hantao, Ji; Myers, Clayton; Aragon, Carlos; Jennings, Christopher A.; Ampleford, David J.; Hansen, Stephanie B.; Yager-Elorriaga, David A.; Harding, Eric H.; Shipley, Gabriel A.; Harmon, Roger; Gonzalez, Josue; Molina, Leo

Abstract not provided.

Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Hare, Jack; Datta, Rishabh; Lebedev, Sergey; Chittenden, Jeremy P.; Crilly, Aidan; Bland, Simon; Halliday, Jack; Russell, Danny; Fox, Will; Ji, Hantao; Kuranz, Carolyn; Myers, Clayton; Aragon, Carlos; Jennings, Christopher A.; Ampleford, David J.; Hansen, Stephanie B.; Harding, Eric H.; Dunham, G.S.; Edens, Aaron; Gomez, Matthew R.; Harmon, Roger; Gonzalez, Josue; Kellogg, Jeffrey; Patel, Sonal G.; Looker, Quinn M.; Yager-Elorriaga, David A.; Chandler, Katherine M.

Abstract not provided.

Radiatively-Cooled Magnetic Reconnection Experiments at the Z Pulsed-Power Facility

Hare, Jack; Datta, Rishabh; Sergey, Lebedev; Chittenden, Jerry; Crilly, Aidan; Bland, Simon; Halliday, Jack; Russell, Danny; Fox, Will; Hantao, Ji; Kuranz, Carolyn; Myers, Clayton; Aragon, Carlos; Jennings, Christopher A.; Ampleford, David J.; Beckwith, Kristian; Harding, Eric H.; Hansen, Stephanie B.; Dunham, G.S.; Edens, Aaron; Gonzalez, Josue; Harmon, Roger; Kellogg, Jeffrey; Jones, Michael; Looker, Quinn M.; Molina, Leo; Montoya, Michael; Patel, Sonal G.; Loisel, Guillaume P.; Speas, Christopher S.; Webb, Timothy J.; Yager-Elorriaga, David A.; Shipley, Gabriel A.; Chandler, Katherine M.

Abstract not provided.

Self-Emission Crystal Imaging of MagLIF Targets on Z

Harding, Eric H.; Fein, Jeffrey R.; Foulk, James W.; Robertson, G.K.; Gomez, Matthew R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, G.S.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Maurer, Andrew J.; Ampleford, David J.; Rochau, G.A.; Doron, R.; Nedostup, O.; Stambulchik, E.; Zarnitsky, Y.; Maron, Y.; Paguio, Reny; Tomlinson, Kurt; Huang, H.; Smith, Gary; Taylor, Randy

Abstract not provided.

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, P.F.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, Christopher A.; Evans, Matthew; Gunning, James; Awe, Thomas J.; Chandler, Gordon A.; Geissel, Matthias; Gomez, Matthew R.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, Shailja; Klein, Brandon; Mangan, Michael A.; Nagayama, Taisuke; Porwitzky, Andrew J.; Ruiz, Daniel E.; Schmit, Paul F.; Slutz, Stephen A.; Smith, Ian C.; Weis, Matthew R.; Yager-Elorriaga, David A.; Ampleford, David J.; Beckwith, Kristian; Mattsson, Thomas; Peterson, K.J.; Sinars, Daniel

Here we present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Galloway, Benjamin R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Development of the MARZ platform (Magnetically Ablated Reconnection on Z) to study astrophysically relevant radiative magnetic reconnection in the laboratory

Myers, Clayton; Hare, Jack; Ampleford, David J.; Aragon, Carlos; Chittenden, Jeremy; Colombo, Anthony; Crilly, Aidan; Datta, Rishabh; Edens, Aaron; Fox, Will; Gomez, Matthew R.; Halliday, Jack; Hansen, Stephanie B.; Harding, Eric H.; Harmon, Roger; Jones, Michael; Jennings, Christopher A.; Ji, Hantao; Kuranz, Carolyn; Lebedev, Sergey; Looker, Quinn M.; Melean, Raul; Uzdensky, Dmitri; Webb, Timothy J.

Abstract not provided.

Developing a platform to enable parameter scaling studies in Magnetized Liner Inertial Fusion experiments

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Weis, Matthew R.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Awe, Thomas J.; Chandler, Gordon A.; Crabtree, J.A.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harding, Eric H.; Foulk, James W.; Mangan, Michael A.; Ruiz, Daniel E.; Smith, Ian C.; Yager-Elorriaga, David A.; Ampleford, David J.; Beckwith, Kristian

Abstract not provided.

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias; Crabtree, J.A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David J.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, Benjamin R.; Hansen, Stephanie B.; Hanson, Jeffrey; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lamppa, Derek C.; Foulk, James W.; Mangan, Michael A.; Maurer, Andrew J.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, A.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Robertson, G.K.; Savage, Mark E.; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, P.F.; Schmit, Paul; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David J.; Beckwith, Kristian; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

IMPROVED PERFORMANCE OF MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS WITH HIGH-ENERGY LOW-MIX LASER PREHEAT CONFIGURATIONS

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Jennings, Christopher A.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, Kelly; Hansen, Stephanie B.; Hanson, J.; Harding, Eric H.; Knapp, P.F.; Mangan, Michael A.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Paguio, Reny; Smith, Gary L.; York, A.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Galloway, Benjamin R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, J.A.; Ampleford, David J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Perea, Lawrence; Peterson, K.J.; Porter, James D.; Rambo, Patrick K.; Robertson, G.K.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Smith, Ian C.; York, A.; Paguio, R.R.; Smith, G.E.; Maudlin, M.; Pollock, B.

Abstract not provided.

Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion

Physical Review E

Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Hansen, Stephanie B.; Peterson, K.J.; Rochau, G.A.; Carpenter, K.R.; Mancini, R.C.

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

More Details

Magnetic field impact on the laser heating in MagLIF

Physics of Plasmas

Carpenter, K.R.; Mancini, R.C.; Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Hansen, Stephanie B.; Peterson, K.J.; Rochau, G.A.

Prior to implosion in Magnetized Liner Inertial Fusion (MagLIF), the fuel is heated to temperatures on the order of several hundred eV with a multi-kJ, multi-ns laser pulse. We present two laser heated plasma experiments, relevant to the MagLIF preheat stage, performed at Z with beryllium liners filled with deuterium and a trace amount of argon. In one experiment, there is no magnetic field and, in the other, the liner and fuel are magnetized with an 8.5 T axial magnetic field. The recorded time integrated, spatially resolved spectra of the Ar K-shell emission are sensitive to electron temperature Te. Individual analysis of the spatially resolved spectra produces electron temperature distributions Te(z) that are resolved along the axis of laser propagation. In the experiment with magnetic field, the plasma reaches higher temperatures and the heated region extends deeper within the liner than in the unmagnetized case. Radiation magnetohydrodynamics simulations of the experiments are presented and post-processed. A comparison of the results from experimental and simulated data reveals that the simulations underpredict Te in both cases but the differences are larger in the case with magnetic field.

More Details

Quantification of MagLIF Morphology using the Mallat Scattering Transformation

Glinsky, Michael E.; Moore, Thomas; Foulk, James W.; Weis, Matthew R.; Jennings, Christopher A.; Ampleford, David J.; Harding, Eric H.; Knapp, P.F.; Gomez, Matthew R.; Lussiez, Sophia E.

The morphology of the stagnated plasma resulting from Magnetized Liner Inertial Fusion (MagLIF) is measured by imaging the self-emission x-rays coming from the multi-keV plasma, and the evolution of the imploding liner is measured by radiographs. Equivalent diagnostic response can be derived from integrated rad-MHD simulations from programs such as Hydra and Gorgon. There have been only limited quantitative ways to compare the image morphology, that is the texture, of simulations and experiments. We have developed a metric of image morphology based on the Mallat Scattering Transformation (MST), a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric has demonstrated excellent performance in classifying ensembles of synthetic stagnation images. We use this metric to quantitatively compare simulations to experimental images, cross experimental images, and to estimate the parameters of the images with uncertainty via a linear regression of the synthetic images to the parameter used to generate them. This coordinate space has proved very adept at doing a sophisticated relative back-ground subtraction in the MST space. This was needed to compare the experimental self emission images to the rad-MHD simulation images. We have also developed theory that connects the transformation to the causal dynamics of physical systems. This has been done from the classical kinetic perspective and from the field theory perspective, where the MST is the generalized Green's function, or S-matrix of the field theory in the scale basis. From both perspectives the first order MST is the current state of the system, and the second order MST are the transition rates from one state to another. An efficient, GPU accelerated, Python implementation of the MST was developed. Future applications are discussed.

More Details

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Stagnation performance scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Knapp, P.F.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael A.; Ruiz, Carlos L.; Chandler, Gordon A.; Webb, Timothy J.; Moore, Thomas; Laity, George R.; Ampleford, David J.; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy

Physics of Plasmas

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Foulk, James W.; Fein, Jeffrey R.; Ampleford, David J.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Paguio, R.R.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Gary L.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, D.

A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.

More Details

Stagnation Performance Scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Knapp, P.F.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael A.; Ruiz, Carlos L.; Chandler, Gordon A.; Hahn, Kelly D.; Webb, Timothy J.; Moore, Thomas; Laity, George R.; Ampleford, David J.; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

Designing And Testing New MagLIF Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, K.J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

MagLIF laser preheat update

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, K.J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Wei, M.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Designing and testing new preheat protocols for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Peterson, K.J.; Glinsky, Michael E.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Porter, John L.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

Uncovering signatures of preheat performance in MagLIF experiments using stimulated Raman and Brillouin backscatter spectra

Fein, Jeffrey R.; Bliss, David E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David J.; Glinsky, Michael E.; Foulk, James W.; Harding, Eric H.; Macrunnels, Keven A.; Patel, Sonal G.; Ruiz, Daniel E.; Scoglietti, Daniel J.; Smith, Ian C.; Weis, Matthew R.; Peterson, Kara J.

Abstract not provided.

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, Matthew R.; Harding, Eric H.; Geissel, Matthias; Ampleford, David J.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, P.F.; Paguio, R.R.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, G.E.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew R.; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens; Schmit, Paul; Shipley, Gabriel A.; Sinars, Daniel; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

Nature Communications

Harding, Eric H.

Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

More Details

Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

Physics of Plasmas

Hansen, Stephanie B.; Harding, Eric H.; Gomez, Matthew R.; Knapp, P.F.; Nagayama, Taisuke; Bailey, James E.

The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

More Details

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Speas, Christopher S.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

MagLIF Pre-Heat Optimization on the PECOS Surrogacy Platform

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

A 7.2 keV spherical x-ray crystal backlighter for two-frame, two-color backlighting at Sandia's Z Pulsed Power Facility

Review of Scientific Instruments

Schollmeier, Marius; Knapp, P.F.; Ampleford, David J.; Harding, Eric H.; Jennings, Christopher A.; Lamppa, Derek C.; Loisel, Guillaume P.; Martin, Matthew R.; Robertson, G.K.; Shores, Jonathon; Smith, Ian C.; Speas, Christopher S.; Weis, Matthew R.; Porter, John L.; Mcbride, Ryan

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility - a 30 MA, 100 ns rise-time, pulsed-power driver - use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David J.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, P.F.; Laity, George R.; Martin, Matthew R.; Nagayama, Taisuke; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul; Schwarz, Jens; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund; Cuneo, Michael E.; Jones, Brent M.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel; Stygar, William A.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Progress in Preconditioning MagLIF fuel and its Impact on Performance

Peterson, K.J.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Geissel, Matthias; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

Geissel, Matthias; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Glinsky, Michael E.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Neutron Diagnostic Development fro the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Jones, Brent M.; Gomez, Matthew R.; Knapp, P.F.; Sefkow, Adam B.; Hansen, Stephanie B.; Schmit, Paul; Harding, Eric H.; Norris, Edward T.; Torres, Jose; Cooper, Gary; Styron, Jedediah D.; Glebov, V.Y.; Frenje, J.; Lahmann, B.; Gatu-Johnson, M.; Seguin, F.; Petrasso, R.; Fittinghoff, D.; May, M.; Snyder, L.; Moy, K.; Buckles, R.

Abstract not provided.

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

Proceedings of SPIE - The International Society for Optical Engineering

Geissel, Matthias; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Scoglietti, Daniel J.; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

More Details

Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

High Energy Density Physics

Ao, Tommy; Harding, Eric H.; Bailey, James E.; Lemke, Raymond W.; Desjarlais, Michael P.; Hansen, Stephanie B.; Smith, Ian C.; Geissel, Matthias; Maurer, Andrew J.; Reneker, Joseph; Romero, Dustin H.; Sinars, Daniel; Rochau, G.A.; Foulk, James W.

Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.

More Details

SNL perspective on the nTOF workshop

Jones, Brent M.; Hahn, Kelly; Ruiz, Carlos L.; Chandler, Gordon A.; Fehl, David L.; Lash, Joel S.; Knapp, P.F.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Mcpherson, Leroy A.; Nelson, Alan J.; Rochau, G.A.; Schmit, Paul; Sefkow, Adam B.; Sinars, Daniel; Torres, Jose; Bur, James A.; Cooper, Gary; Bonura, Michael; Long, Joel; Styron, Jedediah D.; Buckles, Rob; Garza, Irene; Moy, Kenneth J.; Davis, Brent; Tinsley, Jim; Tiangco, Rod; Miller, Kirk; Mckenna, Ian

Abstract not provided.

Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

Journal of Applied Physics

Lemke, Raymond W.; Foulk, James W.; Dalton, Devon; Brown, Justin L.; Tomlinson, K.; Robertson, G.R.; Knudson, Marcus D.; Harding, Eric H.; Wills, Ann E.; Carpenter, John H.; Drake, Richard R.; Cochrane, Kyle; Blue, B.E.; Robinson, Allen C.; Mattsson, Thomas

We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

More Details

Delivering Kilojoules of Pre-Heat to Fusion Targets in Sandia's Z-Machine

Geissel, Matthias; Awe, Thomas J.; Campbell, E.M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Physics of Plasmas

Mcbride, Ryan; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Harding, Eric H.; Awe, Thomas J.; Rovang, Dean C.; Hahn, Kelly; Martin, Matthew R.; Cochrane, Kyle; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Campbell, Edward M.; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel

In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

More Details

Laser Pre-Heat Studies for magLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Laser-Fuel Coupling Studies for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Experimental Progress in Magnetized Liner Inertial Fusion (MagLIF)

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Harding, Eric H.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

Mcbride, Ryan; Sinars, Daniel; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, K.J.; Knapp, P.F.; Schmit, Paul; Rovang, Dean C.; Geissel, Matthias; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Lemke, Raymond W.; Hahn, Kelly; Harding, Eric H.; Cuneo, Michael E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

LEH Transmission and Early Fuel Heating for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, J.W.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, P.F.; Schmit, Paul; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly; Sinars, Daniel; Peterson, K.J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Diagnosing magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Schroen, D.G.; Tomlinson, K.; Ryutov, D.

Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Peterson, K.J.; Porter, John L.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; Mcbride, Ryan; Peterson, K.J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul; Sinars, Daniel; Smith, Ian C.

Abstract not provided.

Adaptive Beam Smoothing with Plasma-Pinholes for Laser-Entrance-Hole Transmission Studies

Geissel, Matthias; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Kimmel, Mark; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, John W.; Porter, John L.

Abstract not provided.

Progress and Improvements on Temperature Measurements for Dynamic and Advanced Certification Materials Experiments on Z

Ao, Tommy; Harding, Eric H.; Bailey, James E.; Bliss, David E.; Foulk, James W.; Knudson, Marcus D.; Foulk, James W.

Temperature measurements are very important in shock and ramp type dynamic materials experiments. In particular, accurate temperature measurements can provide stringent additional constraints on determining the equation of state for materials at high pressure. The key to providing these constraints is to develop diagnostic techniques that can determine the temperature with sufficient accuracy. To enable such measurements, we are working to improve our diagnostic capability with three separate techniques, each of which has specific applicability in a particular temperature range. To improve our capability at low temperatures (< 1 eV) we are working on a technique that takes advantage of the change in reflectivity of Au as the temperature is increased. This is most applicable to ramp type experiments. In the intermediate range (~1 eV < T< 5-10 eV) we are improving our optical pyrometry diagnostic by adding the capability of doing an absolute calibration as part of the diagnostic procedure for the shock or shock ramp dynamic materials experiment. This will enable more accurate temperature measurements for shock and shock ramp type experiments. For higher temperatures that occur in very high-pressure shock experiments, above 10 eV, we are developing the capability of doing x-ray Thomson scattering measurements. Such measurements will enable us to characterize strongly shocked or warm dense matter materials. Work on these diagnostic approaches is summarized in this report.

More Details

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; Mcbride, Ryan; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Sinars, Daniel; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael; Knapp, P.F.; Mckenney, John; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund; Tomlinson, Kurt; Schroen, Diana G.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, K.J.; Slutz, Stephen A.; Sinars, Daniel; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias; Schmit, Paul; Smith, Ian C.; Mcbride, Ryan; Rovang, Dean C.; Knapp, P.F.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent E.; Schroen, Diana G.; Tomlinson, Kurt

Abstract not provided.

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, Michael E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles; Bailey, James E.; Hansen, Stephanie B.; Mcbride, Ryan; Herrmann, Mark H.; Lopez, Andrew J.; Peterson, K.J.; Ampleford, David J.; Jones, Michael; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew R.; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund; Mcpherson, Leroy A.; Harding, Eric H.; Knapp, P.F.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John; Owen, Albert C.; Mckee, G.R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias; Rambo, Patrick K.; Sinars, Daniel; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Design of a flyer-plate-driven hydrodynamic instability experiment for Z

Harding, Eric H.; Martin, Matthew R.; Cuneo, Michael E.

We present the preliminary design of a Z experiment intended to observe the growth of several hydrodynamic instabilities (RT, RM, and KH) in a high-energy-density plasma. These experiments rely on the Z-machine's unique ability to launch cm-sized slabs of cold material (known as flyer plates) to velocities of several times 10 km/s. During the proposed experiment, the flyer plate will impact a cm-sized target with an embedded interface that has a prescribed sinusoidal perturbation. The flyer plate will generate a strong shock that propagates into the target and later initiates unstable growth of the perturbation. The goal of the experiment is to observe the perturbation at various stages of its evolution as it transitions from linear to non-linear growth, and finally to a fully turbulent state.

More Details

Scaling of X pinches from 1 MA to 6 MA

Sinars, Daniel; Mcbride, Ryan; Wenger, D.F.; Cuneo, Michael E.; Yu, Edmund; Harding, Eric H.; Hansen, Stephanie B.; Ampleford, David J.; Jennings, Christopher A.

This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parameters at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).

More Details
156 Results
156 Results