SNL perspective on the nTOF workshop
Abstract not provided.
Abstract not provided.
Physical Review Special Topics - Accelerators and Beams
We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review E.
Abstract not provided.
Physics of Plasmas
Abstract not provided.
Review of Scientific Instruments
The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.
Review of Scientific Instruments
Because a direct measurement of the voltage (V) in pulsed power bremsstrahlung sources can be difficult, the energy spectrum of x rays emitted is sometimes used to infer V. Both the voltage and current in such sources vary with time. Moreover, for modern x-ray simulators with multiple cathodes, multiple voltages may exist simultaneously. We demonstrate here how such sources lead to systematic errors in several types of simple-to-field x-ray voltage measurements, especially those with broad spectral response functions, when calibrated against constant-potential bremsstrahlung spectra.
A new, laser-based system has been developed for rapid evaluation of monolithic thermoluminescence dosimetry (TLD) arrays. A precision controlled CO{sub 2} laser is used to sequentially heat 1.5 mm diameter, {approx} 0.04 mm thick TLDs deposited on a .125 mm thick polymer substrate in a 3 mm {times} 3 mm grid. Array areas up to 30 cm {times} 30 cm are used (> 10,000 TLD elements), with evaluation times of 45--90 minutes. Isodose contours and various analysis functions are available on the system-operating PC. This system allows for greatly expanded dosimetry compared to standard TLDs, simultaneously decreasing effort and record keeping. We compared the dosimetric characteristics of this system with standard techniques, using near Si-equivalent CaF{sub 2}:Mn TLD elements, in a test with 19 MeV end-point X radiation. The results show the laser system performs as well as the standard system. 4 refs.