Demonstration of the ACE (Arctic Coastal Erosion) model at Drew Point, AK during a permafrost bluff block collapse event in summer 2018
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Mathematics
We consider a class of nonlinear control synthesis problems where the underlying mathe-matical models are not explicitly known. We propose a data-driven approach to stabilize the systems when only sample trajectories of the dynamics are accessible. Our method is built on the density-function-based stability certificate that is the dual to the Lyapunov function for dynamic systems. Unlike Lyapunov-based methods, density functions lead to a convex formulation for a joint search of the control strategy and the stability certificate. This type of convex problem can be solved efficiently using the machinery of the sum of squares (SOS). For the data-driven part, we exploit the fact that the duality results in the stability theory can be understood through the lens of Perron–Frobenius and Koopman operators. This allows us to use data-driven methods to approximate these operators and combine them with the SOS techniques to establish a convex formulation of control synthesis. The efficacy of the proposed approach is demonstrated through several examples.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document summarizes the findings of a review of published literature regarding the potential impacts of electromagnetic pulse (EMP) and geomagnetic disturbance (GMD) phenomena on oil and gas pipeline systems. The impacts of telluric currents on pipelines and their associated cathodic protection systems has been well studied. The existing literature describes implications for corrosion protection system design and monitoring to mitigate these impacts. Effects of an EMP on pipelines is not a thoroughly explored subject. Most directly related articles only present theoretical models and approaches rather than specific analyses and in-field testing. Literature on SCADA components and EMP is similarly sparse and the existing articles show a variety of impacts to control system components that range from upset and damage to no effect. The limited research and the range of observed impacts for the research that has been published suggests the need for additional work on GMD and EMP and natural gas SCADA components.
Abstract not provided.
In WASH - 1400, external exposure from the finite radioactive cloud (cloudshine) is calculated by assuming that the cloud is semi-infinite, the concentration of radioactive material is uniform, and by using a correction factor to account for these approximations. This correction factor is originally based upon formulations by Healy and depends on the effective size of the plume and the distance from the plume center to the receptor. The range of the finite cloud dose correction factor table from WASH - 1400 developed using Healy formulations can be exceeded in certain situations. When the range of the table is exceeded, no extrapolation is performed; rather interpolation at the edge of the table is performed per WASH - 1400. The tabulated values of these finite cloud dose correction factors from WASH - 1400 and the interpolation at the edge of the table have been used in MACCS since its creation. An expanded table of finite cloud dose correction factors is one way to reduce the need of using interpolation at the edge of the table. The generation of an expanded finite cloud dose correction factor table for future use in MACCS is documented in this report.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Part distortion and residual stress are critical factors for metal additive manufacturing (AM) because they can lead to high failure rates during both manufacturing and service. We present a topology optimization approach that incorporates a fast AM process simulation at each design iteration to provide predictions of manufacturing outcomes (i.e., residual stress, distortion, residual elastic energy) that can be optimized or constrained. The details of the approach and implementation are discussed, and an example design is presented that illustrates the efficacy of the method.
Abstract not provided.
Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Borrowing from nature, neural-inspired interception algorithms were implemented onboard a vehicle. To maximize success, work was conducted in parallel within a simulated environment and on physical hardware. The intercept vehicle used only optical imaging to detect and track the target. A successful outcome is the proof-of-concept demonstration of a neural-inspired algorithm autonomously guiding a vehicle to intercept a moving target. This work tried to establish the key parameters for the intercept algorithm (sensors and vehicle) and expand the knowledge and capabilities of implementing neural-inspired algorithms in simulation and on hardware.
Abstract not provided.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report presents the results of the sampling effort and documents all associated field activities including borehole clearing, soil sample collection, storage and transportation to the analytical laboratories, borehole backfilling and surface restoration, and storage of investigation-derived waste (IDW) for future profiling and disposal by SNL/CA waste management personnel.
Computers and Geotechnics
Performance assessment (PA) of geologic radioactive waste repositories requires three-dimensional simulation of highly nonlinear, thermo-hydro-mechanical-chemical (THMC), multiphase flow and transport processes across many kilometers and over tens to hundreds of thousands of years. Integrating the effects of a near-field geomechanical process (i.e. buffer swelling) into coupled THC simulations through reduced-order modeling, rather than through fully coupled geomechanics, can reduce the dimensionality of the problem and improve computational efficiency. In this study, PFLOTRAN simulations model a single waste package in a shale host rock repository, where re-saturation of a bentonite buffer causes the buffer to swell and exert stress on a highly fractured disturbed rock zone (DRZ). Three types of stress-dependent permeability functions (exponential, modified cubic, and Two-part Hooke's law models) are implemented to describe mechanical characteristics of the system. Our modeling study suggests that compressing fractures reduces DRZ permeability, which could influence the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. Less permeable shale host rock delays buffer swelling, consequently retarding DRZ permeability reduction as well as chemical transport within the barrier system.
This SNL document contains requested radiological survey information, as part of the documentation for the MLU shipment performed by the LANL MLU team on October 20th. The survey was performed in TA-5, on October 20th, 2021. This survey was for radiological coverage for the disassembly of two TRUPACTs, the assembly and loading of their payloads, and the reassembly of the TRUPACTs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Thermoset polymers (e.g. epoxies, vulcanizable rubbers, polyurethanes, etc.) are crosslinked materials with excellent thermal, chemical, and mechanical stability; these properties make thermoset materials attractive for use in harsh applications and environments. Unfortunately, material robustness means that these materials persist in the environment with very slow degradation over long periods of time. Balancing the benefits of material performance with sustainability is a challenge in need of novel solutions. Here, we aimed to address this challenge by incorporating boronic acid-amine complexes into epoxy thermoset chemistries, facilitating degradation of the material under pH neutral to alkaline conditions; in this scenario, water acts as an initiator to remove boron species, creating a porous structure with an enhanced surface area that makes the material more amenable to environmental degradation. Furthermore, the expulsion of the boron leaves the residual pores rich in amines which can be exploited for CO2 absorption or other functionalization. We demonstrated the formation of novel boron species from neat mixing of amine compounds with boric acid, including one complex that appears highly stable under nitrogen atmosphere up to 600 °C. While degradation of the materials under static, alkaline conditions (our “trigger”) was inconclusive at the time of this writing, dynamic conditions appeared more promising. Additionally, we showed that increasing boronic acid content created materials more resistant to thermal degradation, thus improving performance under typical high temperature use conditions.
Abstract not provided.
Abstract not provided.
A collection of x-ray computed tomography scans of specimens from the Museum of Southwestern Biology.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Electronics
Understanding the capture of charge carriers by colour centres in semiconductors is important for the development of novel forms of sensing and quantum information processing, but experiments typically involve ensemble measurements, often impacted by defect proximity. Here we show that confocal fluorescence microscopy and magnetic resonance can be used to induce and probe charge transport between individual nitrogen-vacancy centres in diamond at room temperature. In our experiments, a ‘source’ nitrogen vacancy undergoes optically driven cycles of ionization and recombination to produce a stream of photogenerated carriers, one of which is subsequently captured by a ‘target’ nitrogen vacancy several micrometres away. We use a spin-to-charge conversion scheme to encode the spin state of the source colour centre into the charge state of the target, which allows us to set an upper bound to carrier injection from other background defects. We attribute our observations to the action of unscreened Coulomb potentials producing giant carrier capture cross-sections, orders of magnitude greater than those measured in ensembles.
Abstract not provided.
The objective of this study was to evaluate the impact of alternative ventilation configurations on airflow patterns and potential exposure risks in office spaces. Two existing conference rooms at Sandia NM were modeled using Computational Fluid Dynamics (CFD) simulations to characterize airflow patterns and potential airborne exposure risks in well-mixed and once-through (through-flow) ventilation conditions. Multiple scenarios were studied to evaluate the impact of occupancy, Plexiglass barriers, and a modified-return airflow configuration. Experimental and visualization tests were also conducted to validate the well-mixed and through-flow models and findings. The simulations demonstrated that the modified-return airflow configuration that promoted through-flow conditions reduced pathogen concentrations within the space compared to the well-mixed airflow configuration; occupancy reduction only reduced the number of exposed individuals, and Plexiglass barriers had almost no effect. The experimentally measured air speeds at nine anemometer locations generally matched the simulated airflow velocities, and a fog-purge visualization test was also consistent with simulated results of plume movement and dissipation. The visualization tests demonstrated improvements in air change rate with the modified return, which promoted through-flow conditions, versus the original well-mixed ventilation configuration. The results of this study demonstrate that minor modifications to a space that promote through-flow conditions can improve air quality and reduce pathogen concentrations. Additional airflow modeling and testing of alternative occupied space configurations are recommended to further inform room designs that mitigate airborne exposure risks for occupants.
Abstract not provided.
Abstract not provided.
This project demonstrates that Chapel programs can interface with MPI-based libraries written in C++ without storing multiple copies of shared data. Chapel is a language for productive parallel computing using global address spaces (PGAS). We identified two approaches to interface Chapel code with the MPI-based Grafiki and Trilinos libraries. The first uses a single Chapel executable to call a C function that interacts with the C++ libraries. The second uses the mmap function to allow separate executables to read and write to the same block of memory on a node. We also encapsulated the second approach in Docker/Singularity containers to maximize ease of use. Comparisons of the two approaches using shared and distributed memory installations of Chapel show that both approaches provide similar scalability and performance.
Journal of Energy Resources Technology, Transactions of the ASME
Drilling systems that use downhole rotation must react torque either through the drill-string or near the motor to achieve effective drilling performance. Problems with drill-string loading such as buckling, friction, and twist become more severe as hole diameter decreases. Therefore, for small holes, reacting torque downhole without interfering with the application of weight-on-bit, is preferred. In this paper, we present a novel mechanism that enables effective and controllable downhole weight on bit transmission and torque reaction. This scalable design achieves its unique performance through four key features: (1) mechanical advantage based on geometry, (2) direction dependent behavior using rolling and sliding contact, (3) modular scalability by combining modules in series, and (4) torque reaction and weight on bit that are proportional to applied axial force. As a result, simple mechanical devices can be used to react large torques while allowing controlled force to be transmitted to the drill bit. We outline our design, provide theoretical predictions of performance, and validate the results using full-scale testing. The experimental results include laboratory studies as well as limited field testing using a percussive hammer. These results demonstrate effective torque reaction, axial force transmission, favorable scaling with multiple modules, and predictable performance that is proportional to applied force.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: • Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. • A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. • Device models that are specifically tailored to meet Sandia’s needs, including some radiation-aware devices (for Sandia users only). • Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase — a message passing parallel implementation — which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As the number of supported platforms for SNL software increases, so do the testing requirements. This increases the total time spent between when a developer submits code for testing, and when tests are completed. This in turn leads developers to hold off submitting code for testing, meaning that when code is ready for testing there's a lot more of it. This increases the likelihood of merge conflicts which the developer must resolve by hand -- because someone else touched the files near the lines the developer touched. Current text-based diff tools often have trouble resolving conflicts in these cases. Work in Europe and Japan has demonstrated that, using programming language aware diff tools (e.g., using the abstract syntax tree (AST) a compiler might generate) can reduce the manual labor necessary to resolve merge conflicts. These techniques can detect code blocks which have moved, as opposed than current text-based diff tools, which only detect insertions / deletions of text blocks. In this study, we evaluate one such tool, GumTree, and see how effective it is as a replacement for traditional text-based diff approaches.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nanomaterials
Co-deposited, immiscible alloy systems form hierarchical microstructures under specific deposition conditions that accentuate the difference in constituent element mobility. The mechanism leading to the formation of these unique hierarchical morphologies during the deposition process is difficult to identify, since the characterization of these microstructures is typically carried out post-deposition. We employ phase-field modeling to study the evolution of microstructures during deposition combined with microscopy characterization of experimentally deposited thin films to reveal the origin of the formation mechanism of hierarchical morphologies in co-deposited, immiscible alloy thin films. Our results trace this back to the significant influence of a local compositional driving force that occurs near the surface of the growing thin film. We show that local variations in the concentration of the vapor phase near the surface, resulting in nuclei (i.e., a cluster of atoms) on the film’s surface with an inhomogeneous composition, can trigger the simultaneous evolution of multiple concentration modulations across multiple length scales, leading to hierarchical morphologies. We show that locally, the concentration must be above a certain threshold value in order to generate distinct hierarchical morphologies in a single domain.