Publications

Results 5251–5300 of 99,299

Search results

Jump to search filters

Modification of a Silicon Photomultiplier for Reduced High Temperature Dark Count Rate

Balajthy, Jon A.; Burkart, James; Christiansen, Joel T.; Sweany, Melinda D.; Udoni, Darlene; Weber, Thomas M.

In this work we present a novel method for improving the high-temperature performance of silicon photomultipliers (SiPMs) via focused ion beam (FIB) modification of individual microcells. The literature suggests that most of the dark count rate (DCR) in a SiPM is contributed by a small percentage (<5%) of microcells. By using a FIB to electrically deactivate this relatively small number of microcells, we believe we can greatly reduce the overall DCR of the SiPM at the expense of a small reduction in overall photodetection efficiency, thereby improving its high temperature performance. In this report we describe our methods for characterizing the SiPM to determine which individual microcells contribute the most to the DCR, preparing the SiPM for FIB, and modifying the SiPM using the FIB to deactivate the identified microcells.

More Details

Large-scale frictionless jamming with power-law particle size distributions

Physical Review E

Monti, Joseph M.; Clemmer, Joel T.; Srivastava, Ishan; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

Due to significant computational expense, discrete element method simulations of jammed packings of size-dispersed spheres with size ratios greater than 1:10 have remained elusive, limiting the correspondence between simulations and real-world granular materials with large size dispersity. Invoking a recently developed neighbor binning algorithm, we generate mechanically stable jammed packings of frictionless spheres with power-law size distributions containing up to nearly 4 000 000 particles with size ratios up to 1:100. By systematically varying the width and exponent of the underlying power laws, we analyze the role of particle size distributions on the structure of jammed packings. The densest packings are obtained for size distributions that balance the relative abundance of large-large and small-small particle contacts. Although the proportion of rattler particles and mean coordination number strongly depend on the size distribution, the mean coordination of nonrattler particles attains the frictionless isostatic value of six in all cases. The size distribution of nonrattler particles that participate in the load-bearing network exhibits no dependence on the width of the total particle size distribution beyond a critical particle size for low-magnitude exponent power laws. This signifies that only particles with sizes greater than the critical particle size contribute to the mechanical stability. However, for high-magnitude exponent power laws, all particle sizes participate in the mechanical stability of the packing.

More Details

Reviewing MACCS Capabilities for Assessing Tritium Releases to the Environment

Clavier, Kyle A.; Clayton, Daniel J.

Tritium has a unique physical and chemical behavior which causes it to be highly mobile in the environment. As it behaves similarly to hydrogen in the environment, it may also be readily incorporated into the water cycle and other biological processes. These factors and other environmental transformations may also cause the oxidation of an elemental tritium release, resulting in a multiple order of magnitude increase in dose coefficient and radiotoxicity. While source term development and understanding for advanced reactors are still underway, tritium may be a radionuclide of interest. It is thus important to understand how tritium moves through the environment and how the MACCS accident consequence code handles acute tritium releases in an accident scenario. Additionally, existing tritium models may have functionalities that could inform updates to MACCS to handle tritium. In this report tritium transport is reviewed and existing tritium models are summarized in view of potential updates to MACCS.

More Details

Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results

Eldred, Michael; Adams, Brian M.; Geraci, Gianluca; Portone, Teresa; Ridgway, Elliott M.; Stephens, John A.; Wildey, Timothy

This report documents the results of an FY22 ASC V&V level 2 milestone demonstrating new algorithms for multifidelity uncertainty quantification. Part I of the report describes the algorithms, studies their performance on a simple model problem, and then deploys the methods to a thermal battery example from the open literature. Part II (restricted distribution) applies the multifidelity UQ methods to specific thermal batteries of interest to the NNSA/ASC program.

More Details

A Model of Narrative Reinforcement on a Dual-Layer Social Network

Emery, Benjamin; Ting, Christina; Gearhart, Jared L.; Tucker, J.D.

Widespread integration of social media into daily life has fundamentally changed the way society communicates, and, as a result, how individuals develop attitudes, personal philosophies, and worldviews. The excess spread of disinformation and misinformation due to this increased connectedness and streamlined communication has been extensively studied, simulated, and modeled. Less studied is the interaction of many pieces of misinformation, and the resulting formation of attitudes. We develop a framework for the simulation of attitude formation based on exposure to multiple cognitions. We allow a set of cognitions with some implicit relational topology to spread on a social network, which is defined with separate layers to specify online and offline relationships. An individual’s opinion on each cognition is determined by a process inspired by the Ising model for ferromagnetism. We conduct experimentation using this framework to test the effect of topology, connectedness, and social media adoption on the ultimate prevalence of and exposure to certain attitudes.

More Details

Quantitative Assessment for Advanced Reactor Radioisotope Screening Utilizing a Heat Pipe Reactor Inventory

Clavier, Kyle A.; Clayton, Daniel J.; Faucett, Christopher A.

This report documents a method for the quantitative identification of radionuclides of potential interest for accident consequence analysis involving advanced nuclear reactors. Based on previous qualitative assessments of radionuclide inventories for advanced reactors coupled with the review of a radiological inventory developed for a heat pipe reactor, a 1 Ci activity airborne release was calculated for 137 radionuclides using the MACCS 4.1 code suite. Several assumptions regarding release conditions were made and discussed herein. The potential release of a heat pipe reactor inventory was also modeled following the same assumptions. Results provide an estimation of the relative EARLY and CHRONC phase dose contribution from advanced reactor radionuclides and are normalized to doses from equivalent releases of I-131 and Cs-137, respectively. Ultimately, a list of 69 radionuclides with EARLY or CHRONC dose contributions at least 1/100th that of I-131 or Cs-137, respectively – 48 of which are currently considered for LWR consequence analyses – was identified of being of potential importance for analyses involving a heat pipe reactor.

More Details

Time- and Energy-Resolved Coupled Saturn Radiation Environments Simulations Using the Integrated Tiger Series (ITS) Code

Depriest, Kendall R.; Pointon, Timothy D.; Sirajuddin, David; Ulmen, Ben

Using a newly developed coupling of the ElectroMagnetic Plasma In Realistic Environments (EMPIRE) code with the Integrated Tiger Series (ITS) code, radiation environment calculations have been performed. The effort was completed as part of the Saturn Recapitalization (Recap) program that represents activities to upgrade and modernize the Saturn accelerator facility. The radiation environment calculations performed provide baseline results with current or planned hardware in the facility. As facility design changes are proposed and implemented as part of Saturn Recap, calculations of the radiation environment will be performed to understand how the changes impact the output of the Saturn accelerator.

More Details

Linear Seismic Source Equivalents in 3D Nonlinear Models: Effects of Embedded Small-Scale, Near-Source Structures

Preston, Leiph; Eliassi, Mehdi

Gaining a proper understanding of how Earth structure and other near-source properties affect estimates of explosion yield is important to the nonproliferation mission. The yields of explosion sources are often based on seismic moment or waveform amplitudes. Quantifying how the seismic waveforms or estimates of the source characteristics derived from those waveforms are influenced by natural or man-made structures within the near-source region, where the wavefield behaves nonlinearly, is required to understand the full range of uncertainty in those yield estimates. We simulate tamped chemical explosions using a nonlinear, shock physics code and couple the ground motions beyond the elastic radius to a linear elastic, full waveform seismic simulation algorithm through 3D media. In order to isolate the effects of simple small-scale 3D structures on the seismic wavefield and linear seismic source estimates, we embed spheres and cylinders close to the fully- tamped source location within an otherwise homogenous half-space. The 3 m diameters spheres, given their small size compared to the predominate wavelengths investigated, not surprisingly are virtually invisible with only negligible perturbations to the far-field waveforms and resultant seismic source time functions. Similarly, the 11 m diameter basalt sphere has a larger, but still relatively minor impact on the wavefield. However, the 11 m diameter air-filled sphere has the largest impact on both waveforms and the estimated seismic moment of any of the investigated cases with a reduction of ~25% compared to the tamped moment. This significant reduction is likely due in large part to the cavity collapsing from the shock instead of being solely due to diffraction effects . Although the cylinders have the same diameters as the 3 m spheres, their length of interaction with the wavefield produces noticeable changes to the seismic waveforms and estimated source terms with reductions in the peak seismic moment on the order of 10%. Both the cylinders and 11 m diameter spheres generate strong shear waves that appear to emanate from body force sources.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

Equipment Testing Environment (ETE) Process Specification

Hahn, Andrew S.; Karch, Benjamin; Bruneau, Robert; Rowland, Mike; Valme, Romuald

This document is intended to be utilized with the Equipment Test Environment being developed to provide a standard process by which the ETE can be validated. The ETE is developed with the intent of establishing cyber intrusion, data collection and through automation provide objective goals that provide repeatability. This testing process is being developed to interface with the Technical Area V physical protection system. The document will overview the testing structure, interfaces, device and network logging and data capture. Additionally, it will cover the testing procedure, criteria and constraints necessary to properly capture data and logs and record them for experimental data capture and analysis.

More Details

An introduction to developing GitLab/Jacamar runner analyst centric workflows at Sandia

Robinson, Allen C.; Swan, Matthew S.; Harvey, Evan C.; Klein, Brandon; Lawson, Gary; Milewicz, Reed M.; Foulk, James W.; Schmitz, Mark E.; Warnock, Scott A.

This document provides very basic background information and initial enabling guidance for computational analysts to develop and utilize GitOps practices within the Common Engineering Environment (CEE) and High Performance Computing (HPC) computational environment at Sandia National Laboratories through GitLab/Jacamar runner based workflows.

More Details

Strategic Petroleum Reserve Cavern Leaching Monitoring CY21

Zeitler, Todd Z.; Ross, Tonya S.A.; Valdez, Raquel; Maurer, Hannah G.; Hart, David

Th e U.S. Strategic Petroleum Reserve (SPR) is a crude oil storage system administered by the U.S. Department of Energy. The reserve consists of 60 active storage caverns located in underground salt domes spread across four sites in Louisiana and Texas, near the Gulf of Mexico. Beginning in 2016, the SPR started executing C ongressionally mandated oil sales. The configuration of the reserve, with a total capacity of greater than 700 million barrels ( MMB ) , re quires that unsaturated water (referred to herein as ?raw? water) is injected into the storage caverns to displace oil for sales , exchanges, and drawdowns . As such, oil sales will produce cavern growth to the extent that raw water contacts the salt cavern walls and dissolves (leaches) the surrounding salt before reaching brine saturation. SPR injected a total of over 45 MMB of raw water into twenty - six caverns as part of oil sales in CY21 . Leaching effects were monitored in these caverns to understand how the sales operations may impact the long - term integrity of the caverns. While frequent sonars are the most direct means to monitor changes in cavern shape, they can be resource intensive for the number of caverns involved in sales and exchanges. An interm ediate option is to model the leaching effects and see if any concerning features develop. The leaching effects were modeled here using the Sandia Solution Mining Code , SANSMIC . The modeling results indicate that leaching - induced features do not raise co ncern for the majority of the caverns, 15 of 26. Eleven caverns, BH - 107, BH - 110, BH - 112, BH - 113, BM - 109, WH - 11, WH - 112, WH - 114, BC - 17, BC - 18, and BC - 19 have features that may grow with additional leaching and should be monitored as leaching continues in th ose caverns. Additionally, BH - 114, BM - 4, and BM - 106 were identified in previous leaching reports for recommendation of monitoring. Nine caverns had pre - and post - leach sonars that were compared with SANSMIC results. Overall, SANSMIC was able to capture the leaching well. A deviation in the SANSMIC and sonar cavern shapes was observed near the cavern floor in caverns with significant floor rise, a process not captured by SANSMIC. These results validate that SANSMIC continues to serve as a useful tool for mon itoring changes in cavern shape due to leaching effects related to sales and exchanges.

More Details
Results 5251–5300 of 99,299
Results 5251–5300 of 99,299