Publications

Results 88701–88800 of 96,771

Search results

Jump to search filters

Modeling Error and Adaptivity in Nonlinear Continuum Mechanics

Hammerand, Daniel C.

In this report, computable global bounds on errors due to the use of various mathematical models of physical phenomena are derived. The procedure involves identifying a so-called fine model among a class of models of certain events and then using that model as a datum with respect to which coarser models can be compared. The error inherent in a coarse model, compared to the fine datum, can be bounded by residual functionals unambiguously defined by solutions of the coarse model. Whenever there exist hierarchical classes of models in which levels of sophistication of various coarse models can be defined, an adaptive modeling strategy can be implemented to control modeling error. In the present work, the class of models is within those embodied in nonlinear continuum mechanics.

More Details

The Embudito Mission: A Case Study of the Systematics of Autonomous Ground Mobile Robots

Eicker, Patrick J.

Ground mobile robots are much in the mind of defense planners at this time, being considered for a significant variety of missions with a diversity ranging from logistics supply to reconnaissance and surveillance. While there has been a very large amount of basic research funded in the last quarter century devoted to mobile robots and their supporting component technologies, little of this science base has been fully developed and deployed--notable exceptions being NASA's Mars rover and several terrestrial derivatives. The material in this paper was developed as a first exemplary step in the development of a more systematic approach to the R and D of ground mobile robots.

More Details

Fundamental Understanding and Development of Low-Cost, High-Efficient Silicon Solar Cells Final Progress Report: Sept. 1999 - June 2000

Ruby, Douglas S.

The overall objectives of this program are to (1) develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

More Details

Measuring the Predictive Capability of Computational Models: Principles and Methods, Issues and Illustrations

Easterling, Robert G.

It is critically important, for the sake of credible computational predictions, that model-validation experiments be designed, conducted, and analyzed in ways that provide for measuring predictive capability. I first develop a conceptual framework for designing and conducting a suite of physical experiments and calculations (ranging from phenomenological to integral levels), then analyzing the results first to (statistically) measure predictive capability in the experimental situations then to provide a basis for inferring the uncertainty of a computational-model prediction of system or component performance in an application environment or configuration that cannot or will not be tested. Several attendant issues are discussed in general, then illustrated via a simple linear model and a shock physics example. The primary messages I wish to convey are: (1) The only way to measure predictive capability is via suites of experiments and corresponding computations in testable environments and configurations; (2) Any measurement of predictive capability is a function of experimental data and hence is statistical in nature; (3) A critical inferential link is required to connect observed prediction errors in experimental contexts to bounds on prediction errors in untested applications. Such a connection may require extrapolating both the computational model and the observed extra-model variability (the prediction errors: nature minus model); (4) Model validation is not binary. Passing a validation test does not mean that the model can be used as a surrogate for nature; (5) Model validation experiments should be designed and conducted in ways that permit a realistic estimate of prediction errors, or extra-model variability, in application environments; (6) Code uncertainty-propagation analyses do not (and cannot) characterize prediction error (nature vs. computational prediction); (7) There are trade-offs between model complexity and the ability to measure a computer model's predictive capability that need to be addressed in any particular application; and (8) Adequate quantification of predictive capability, even in greatly simplified situations, can require a substantial number of model-validation experiments.

More Details

Dust in the Ion Wind: A Model for Plasma Dust Particle Dynamics

Riley, Merle E.

A model is developed for the forces acting on a micrometer-size particle (dust) suspended within a plasma sheath. The significant forces acting on a single particle are gravity, neutral gas drag, electric field, and the ion wind due to ion flow to the electrode. It is shown that an instability in the small-amplitude dust oscillation might exist if the conditions are appropriate. In such a case the forcing term due to the ion wind exceeds the damping of the gas drag. The basic physical cause for the instability is that the ion wind force can be a decreasing function of the relative ion-particle velocity. However it seems very unlikely the appropriate conditions for instability are present in typical dusty plasmas.

More Details

Gridless Compressible Flow: A White Paper

Strickland, James H.

In this paper the development of a gridless method to solve compressible flow problems is discussed. The governing evolution equations for velocity divergence {delta}, vorticity {omega}, density {rho}, and temperature T are obtained from the primitive variable Navier-Stokes equations. Simplifications to the equations resulting from assumptions of ideal gas behavior, adiabatic flow, and/or constant viscosity coefficients are given. A general solution technique is outlined with some discussion regarding alternative approaches. Two radial flow model problems are considered which are solved using both a finite difference method and a compressible particle method. The first of these is an isentropic inviscid 1D spherical flow which initially has a Gaussian temperature distribution with zero velocity everywhere. The second problem is an isentropic inviscid 2D radial flow which has an initial vorticity distribution with constant temperature everywhere. Results from the finite difference and compressible particle calculations are compared in each case. A summary of the results obtained herein is given along with recommendations for continuing the work.

More Details

FILM-30: A Heat Transfer Properties Code for Water Coolant

Youchison, Dennis L.

A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.

More Details

Sensitivity analysis for nonlinear heat conduction

Journal of Heat Transfer

Dowding, Kevin J.

Parameters in the heat conduction equation are frequently modeled as temperature dependent. Thermal conductivity, volumetric heat capacity, convection coefficients, emissivity, and volumetric source terms are parameters that may depend on temperature. Many applications, such as parameter estimation, optimal experimental design, optimization, and uncertainty analysis, require sensitivity to the parameters describing temperature-dependent properties. A general procedure to compute the sensitivity of the temperature field to model parameters for nonlinear heat conduction is studied. Parameters are modeled as arbitrary functions of temperature. Sensitivity equations are implemented in an unstructured grid, element-based numerical solver. The objectives of this study are to describe the methodology to derive sensitivity equations for the temperature-dependent parameters and present demonstration calculations. In addition to a verification problem, the design of an experiment to estimate temperature variable thermal properties is discussed.

More Details

Results and Insights on the Impact of Smoke on Digital Instrumentation and Control

Martin, Tina T.; Nowlen, Steven P.

Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and to cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.

More Details

Directional shear force microscopy

Applied Physics Letters

Burns, A.R.

We describe a technique, based on shear force microscopy, that allows one to detect shear forces in a chosen direction at the nanometer scale. The lateral direction of an oscillating probe tip is determined by selecting which of the four quadrants are excited on the piezo driver. The shear forces depend directly on this lateral direction if structural anisotropies are present, as confirmed with polydiacetylene monolayers. © 2001 American Institute of Physics.

More Details

Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films

Sensors and Actuators, B: Chemical

Sasaki, Darryl Y.; Singh, Seema S.; Cox, Jimmy D.; Pohl, Phillip I.

Thin films of polymethylmethacrylate (PMMA) doped with perylene provide selective, robust and easily prepared optical sensor films for NO2 gas with suitable response times for materials aging applications. The materials are readily formed as 200 nm thin spin cast films on glass from chlorobenzene solution. The fluorescence emission of the films (λmax = 442 nm) is quenched upon exposure to NO2 gas through an irreversible reaction forming non-fluorescent nitroperylene. Infrared, UV-VIS and fluorescence spectroscopies confirmed the presence of the nitro adduct in the films. In other atmospheres examined, such as air and 1000 ppm concentrations of SO2, CO, Cl2 and NH3, the films exhibited no loss of fluorescence intensity over a period of days to weeks. Response curves were obtained for 1000, 100 and 10 ppm NO2 at room temperature with equilibration times varying from hours to weeks. The response curves were fit using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem assuming that the situation is reaction limiting. The forward reaction constant fitted to experimental data was kf to approximately 0.06 (ppm min)-1.

More Details

Radiation-driven shock and debris propagation down a partitioned pipe

International Journal of Impact Engineering

Furnish, Michael D.; Lawrence, R.J.; Hall, Clint A.; Asay, J.R.; Barker, D.L.; Mize, G.A.; Marsh, E.A.; Bernard, M.A.

Two experiments have been performed to measure the effects of pulsed radiation loads on the front of small tubular structures, using as an energy source the X-ray fluence produced by a Z-pinch at the Sandia National Laboratories Z Facility. The project had two major goals: to establish the feasibility of using the Z machine to study the phenomenology associated with debris generation and propagation down tubular structures with partitions; and to use the resultant experimental data to validate numerical hydrocodes (shock physics codes) so that we have confidence in their use in analyzing these types of situations. Two tubular aluminum structures (5 and 10 cm long and 1 cm inside diameter) were prepared, with aluminum partitions located at the front, halfway down the pipe, and at the rear. Interferometry (VISARs) provided multiple velocity histories for all of the partitions. In both experiments, the first barrier, which was exposed directly to the x-ray fluence, was launched into the pipe at a velocity of ∼2 km/s, accelerating to give a mean velocity of ∼ 2.6 km/s. Loss of plate integrity is inferred from the dispersed launch of the second partition at ∼1 km/s. Wall shocks propagating at 4.5 km/s were inferred. Post-test metallography showed evidence of melting and partial vaporization of the plates, and turbulent mixing with material from the walls. Calculations qualitatively agree with the observed results, but slightly overpredict debris velocity, possibly due to overestimates of total energy fluence. An application for this work is the study of techniques for line-of-sight shock and debris mitigation on high-power pulsed power facilities such as Z and its follow-on machines. © 2001 Elsevier Science Ltd. All rights reserved.

More Details

On the fluid mechanics of fires

Annual Review of Fluid Mechanics

Tieszen, Sheldon R.

Fluid mechanics research related to fire is reviewed with a focus on canonical flows, multiphysics coupling aspects, and experimental and numerical techniques. Fire is a low-speed, chemically reacting flow in which buoyancy plays an important role. Fire research has focused on two canonical flows, the reacting boundary layer and the reacting free plume. There is rich, multilateral, bidirectional coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid mechanics database for fire owing to measurement difficulties in the harsh environment and to the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

More Details

Thermal chain model of electrorheology and magnetorheology

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Martin, James E.

Three dimensional steady shear simulations of electrorheology (ER) and magnetorheology (MR) in a uniaxial field are presented and included the effects of Brownian motion. The shear thinning viscosity was observed in the absence of thermal fluctuations. The fluid stress decreased, especially at low Mason numbers, as the influence of Brownian motion increased. A microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids was proposed.

More Details

Micromechanics of Deformation in Porous Liquid-Phase-Sintered Alumina under Hertzian Contact

Journal of the American Ceramic Society

Digiovanni, Anthony A.

A series of fine-grained porous alumina samples, with and without a liquid phase, were fabricated in compositions matched closely to commercially available alumina used as microelectronic substrates. Hertzian indentation on monolithic specimens of the glass-containing samples produced a greater quasi-ductile stress-strain response compared with that observed in the pure alumina. Maximum residual indentation depths, determined from surface profilometry, correlated with the stress-strain results. Moreover, microstructural observations from bonded interface specimens revealed significantly more damage in the form of microcracking and under extreme loading, pore collapse, in the glass-containing specimens. The absence of the typical twin faulting mechanism observed for larger-grained alumina suggests that the damage mechanism for quasi-ductility in these fine-grained porous aluminas was derived from the pores acting as a stress concentrator and the grain boundary glass phase providing a weak path for short crack propagation.

More Details

Studies of tritiated co-deposited layers in TFTR

Journal of Nuclear Materials

Skinner, C.H.; Gentile, C.A.; Ascione, G.; Carpe, A.; Causey, R.A.; Hayashi, T.; Hogan, J.; Langish, S.; Nishi, M.; Shu, W.M.; Wampler, W.R.; Young, K.M.

Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons, a stainless steel shutter and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.56 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling.

More Details

Phase identification of individual crystalline particles by electron backscatter diffraction

Journal of Microscopy

Small, J.A.; Michael, Joseph R.

Recently, an electron backscatter diffraction (EBSD) system was developed that uses a 1024 × 1024 CCD camera coupled to a thin phosphor. This camera has been shown to produce excellent EBSD patterns. In this system, crystallographic information is determined from the EBSD pattern and coupled with the elemental information from energy or wavelength dispersive X-ray spectrometry. Identification of the crystalline phase of a sample is then made through a link to a commercial diffraction database. To date, this system has been applied almost exclusively to conventional, bulk samples that have been polished to a fiat surface. In this investigation, we report on the application of the EBSD system to the phase identification analysis of individual micrometre and submicrometre particles rather than fiat surfaces.

More Details

Pressure-Induced Phase Transformation of Controlled-Porosity Pb(Zr0.95Ti0.05)O3 Ceramics

Journal of the American Ceramic Society

Tuttle, Bruce T.; Yang, Pin Y.; Gieske, John H.; Voigt, James A.; Scofield, Timothy W.; Zeuch, David H.; Olson, Walter R.

Chemically prepared Pb(Zr0.95Ti0.05)O3 (PZT 95/5) ceramics were fabricated with a range of different porosity levels, while grain size was held constant, by systematic additions of added organic pore former (Avicel). Use of Avicel in amounts ranging from 0 to 4.0 wt% resulted in fired ceramic densities that ranged from 97.3% to 82.3%. Hydrostatic-pressure-induced ferroelectric (FE) to antiferroelectric (AFE) phase transformations were substantially more diffuse and occurred at lower hydrostatic pressures with increasing porosity. An ∼12 MPa decrease in hydrostatic transformation pressure per volume percent added porosity was observed. The decrease in transformation pressure with decreasing density was quantitatively consistent with the calculated macroscopic stress required to achieve a specific volumetric macrostrain (0.40%). This strain was equivalent to experimentally measured macrostrain for FE-to-AFE transformation. The macroscopic stress levels were calculated using measured bulk modulus values that decreased from 84 to 46 GPa as density decreased from 97.3% to 82.3%. Good agreement between calculated and measured values of FE-to-AFE transformation stress was obtained for ceramics fired at 1275° and 1345°C.

More Details

Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO 4, and LiB3O5 crystals: A test of Miller wavelength scaling

Journal of the Optical Society of America B: Optical Physics

Alford, William J.; Smith, A.V.

The wavelength variation of the second-order nonlinear coefficients of KNbO3, KH2PO4 and LiB3O5 crystals was discussed. The second-order nonlinear coefficients were measured using optical parametric amplification and second-harmonic generation over a wide range of wavelengths for the crystals. The results showed that Miller scaling was a useful approximation for the crystals.

More Details

Frequency-doubling broadband light in multiple crystals

Journal of the Optical Society of America B: Optical Physics

Alford, William J.; Smith, A.V.

We compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk-off compensation and with doubling in five crystals adjusted for offset phase-matching frequencies. Using a plane-wave dispersive numerical model of frequency doubling, we study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance, the offset phase-matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second-harmonic bandwidth. The walk-off-compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single-crystal efficiency while maintaining a broad bandwidth. © 2001 Optical Society of America.

More Details

Three-Dimensional Simulation of Grain Growth in the Presence of Mobile Pores

Journal of the American Ceramic Society

Tikare, Veena T.; Holm, Elizabeth A.

A kinetic, three-dimensional Monte Carlo model for simulating grain growth in the presence of mobile pores is presented. The model was used to study grain growth and pore migration by surface diffusion in an idealized geometry that ensures constant driving force for grain growth. The driving forces, pore size, and pore mobilities were varied to study their effects on grain-boundary mobility and grain growth. The simulations captured a variety of complex behaviors, including reduced grain-boundary velocity due to pore drag that has been predicted by analytical theories. The model is capable of treating far more complex geometries, including polycrystals. We present the capabilities of this model and discuss its limitations.

More Details

The long-term inflow and structural test program

20th 2001 ASME Wind Energy Symposium

Sutherland, Herbert J.; Jones, Perry L.

The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this program. This turbine and its two sister turbines are located in Bushland, TX, a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

More Details

Real-time tracking of articulated human models using a 3D shape-from-silhouette method

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Luck, Jason; Small, Daniel E.; Little, Charles Q.

This paper describes a system, which acquires 3D data and tracks an eleven degree of freedom human model in real-time. Using four cameras we create a time-varying volumetric image (a visual hull) of anything moving in the space observed by all four cameras. The sensor is currently operating in a volume of approximately 500,000 voxels (1.5 inch cubes) at a rate of 25 Hz. The system is able to track the upper body dynamics of a human (x,y position of the body, a torso rotation, and four rotations per arm). Both data acquisition and tracking occur on one computer at a rate of 16 Hz. We also developed a calibration procedure, which allows the system to be moved and be recalibrated quickly. Furthermore we display in real-time, either the data overlaid with the joint locations or a human avatar. Lastly our system has been implemented to perform crane gesture recognition.

More Details

Integrated platform for testing MEMS mechanical properties at the wafer scale by the IMaP methodology

ASTM Special Technical Publication

De Boer, Maarten P.; Smith, Norman F.; Sinclair, Michael B.

A new instrument to accurately and verifiably measure mechanical properties across an entire MEMS wafer is under development. We have modified the optics on a conventional microelectronics probe station to enable three-dimensional imaging while maintaining the full working distance of a long working distance objective. This allows standard probes or probe cards to be used. We have proceeded to map out mechanical properties of polycrystalline silicon along a wafer column by the Interferometry for Material Property Measurement (IMaP) methodology. From interferograms of simple actuated cantilevers, out-of-plane deflection profiles at the nanometer scale are obtained. These are analyzed by integrated software routines that extract basic mechanical properties such as cantilever curvature and Young's modulus. Non-idealities such as support post compliance and beam take off angle are simultaneously quantified. Curvature and residual stress are found to depend on wafer position. Although deflections of cantilevers varied across the wafer, Young's modulus E - 161 GPa is independent of wafer position as expected. This result is achieved because the non-idealities have been taken into account.

More Details

Investigation of hypergolic fuels with hydrogen peroxide

37th Joint Propulsion Conference and Exhibit

Melof, Brian M.; Grubelich, Mark C.

A low toxicity, high performance, hypergolic, bipropellant system is desired to replace conventional nitrogen tetroxide (NTO) and hydrazine propulsion systems. Hydrogen peroxide exothermically decomposes to water, and oxygen, making it an ideal oxidizer for more environmentally friendly propulsion systems. Unfortunately, the choice of fuel for such systems is not as clear. Many factors such as ignition delay, performance, toxicity, storability, and cost must be considered. Numerous candidate fuels and fuel/catalyst mixtures were screened using a simple laboratory setup and visual observation. A mixture of ethanolamine and 1% copper (II) chloride was found to rapidly ignite with 90% hydrogen peroxide. Hydrogen peroxide and ethanolamine are much less toxic than NTO and hydrazine. Hydrogen peroxide and ethanolamine have a calculated specific impulse of 245 seconds compared to 284 seconds for NTO and monomethyl hydrazine. A low-freezing blend of furfuryl alcohol (47.5%), ethanolamine (47.5%), and copper (II) chloride (5%) was successfully test fired in a small rocket engine with both 90% and 99% hydrogen peroxide. Hypergolic ignition of this mixture was achieved with 70% hydrogen peroxide. Our quest for a non-toxic hypergol began by researching the literature. Most current low freezing points, exhibit good performance, and are non-toxic compared to hydrazines.1 Unfortunately, hypergolic ignition was only achieved after adding a large amount (>10%) of manganese based catalyst.2-4 Metallic catalysts are toxic and impair performance, so low concentrations are desired. In addition, an insoluble catalyst may not remain in uniform suspension, converting a hypergolic fuel into one with inconsistent age related performance. We wanted to find a fuel that was hypergolic by itself, or that could be made so with a much smaller addition of metallic catalyst.

More Details

Parametric models for estimating wind turbine fatigue loads for design

20th 2001 ASME Wind Energy Symposium

Veers, Paul S.

International standards for wind turbine certification depend on finding long-term fatigue load distributions that are conservative with respect to the state of knowledge for a given system. Statistical models of loads for fatigue application are described and demonstrated using flap and edge blade-bending data from a commercial turbine in complex terrain. Distributions of rainflow-counted range data for each ten-minute segment are characterized by parameters related to their first three statistical moments (mean, coefficient of variation, and skewness). Quadratic Weibull distribution functions based on these three moments are shown to match the measured load distributions if the non-damaging low-amplitude ranges are first eliminated. The moments are mapped to the wind conditions with a two-dimensional regression over ten-minute average wind speed and turbulence intensity. With this mapping, the short-term distribution of ranges is known for any combination of average wind speed and turbulence intensity. The long-term distribution of ranges is determined by integrating over the annual distribution of input conditions. First, we study long-term loads derived by integration over wind speed distribution alone, using standard-specified turbulence levels. Next, we perform this integration over both wind speed and turbulence distribution for the example site. Results are compared between standard-driven and site-driven load estimates. Finally, using statistics based on the regression of the statistical moments over the input conditions, the uncertainty (due to the limited data set) in the long-term load distribution is represented by 95% confidence bounds on predicted loads.

More Details

Thermal performance of a dual-channel, helium-cooled, tungsten heat exchanger

Fusion Technology

Youchison, Dennis L.

Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m2 and reached a maximum surface temperature of 593 °C for uniform power loading of 3 kW absorbed on a 2-cm2 area. An impressive 10 kW of power was absorbed on an area of 24 cm2. Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum resistance temperature devices (RTDs) for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m2 using 50 °C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.

More Details

Analytic models of high-temperature hohlraums

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Stygar, William A.; Olson, Richard E.; Spielman, Rick B.; Leeper, Ramon J.

A time dependent model for the unified set of high-temperature-hohlraum was presented. The model lead to the definition of laser-conversion-efficiency in terms of the net source power for a laser-driven hohlraum. The capsule coupling efficiency of the baseline National Facility hohlraum was found to be 15-23 % higher than predicted by the analytic expressions. © 2001 by the Infectious Diseases Society of America.

More Details

Collaborative evaluation of early design decisions and product manufacturability

Proceedings of the Hawaii International Conference on System Sciences

Kleban, S.D.; Stubblefield, W.A.; Mitchiner, K.W.; Mitchiner, John L.; Arms, Robert M.

In manufacturing, the conceptual design and detailed design stages are typically regarded as sequential and distinct. Decisions made in conceptual design are often made with little information as to how they would affect detailed design or manufacturing process specification. Many possibilities and unknowns exist in conceptual design where ideas about product shape and functionality are changing rapidly. Few if any tools exist to aid in this difficult, amorphous stage in contrast to the many CAD and analysis tools for detailed design where much more is known about the final product. The Materials Process Design Environment (MPDE) is a collaborative problem solving environment (CPSE) that was developed so geographically dispersed designers in both the conceptual and detailed stage can work together and understand the impacts of their design decisions on functionality, cost and manufacturability.

More Details

Peer Review Process for the Sandia ASCI V and V Program: Version 1.0

Pilch, Martin P.; Trucano, Timothy G.; Peercy, David E.; Hodges, Ann L.; Young, Eunice R.; Moya, Jaime L.

This report describes the initial definition of the Verification and Validation (V and V) Plan Peer Review Process at Sandia National Laboratories. V and V peer review at Sandia is intended to assess the ASCI code team V and V planning process and execution. Our peer review definition is designed to assess the V and V planning process in terms of the content specified by the Sandia Guidelines for V and V plans. Therefore, the peer review process and process for improving the Guidelines are necessarily synchronized, and form parts of a larger quality improvement process supporting the ASCI V and V program at Sandia.

More Details

Failure surface analysis of polyimide/titanium notched coating Adhesion specimens

Journal of Adhesion

Giunta, Rachel K.

Adhesively-bonded joints of LaRC™ PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to he penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From X-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium oxide, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

More Details

An Examination of System Architectures for Distributing Sensor Data Via Ethernet Networks

Pfeifer, Kent B.; Cernosek, R.W.; Martin, S.J.

Application of the World Wide Web (WWW) for the transfer of sensor data from remote locations to laboratories and offices is a largely ignored application of the WWW. We have investigated several architectures for this application including simple web server/client architectures and variations of this approach. In addition, we have evaluated several commercial approaches and other techniques that have been investigated and are in the literature. Finally, we have provided conclusions based on the results of our study offering suggestions about the advantages and disadvantages of each of the approaches studied.

More Details

A Primer on U.S. Strategic Nuclear Policy

Kunsman, David M.; Lawson, Douglas B.

This primer presents a succinct summary of the evolution of U.S. nuclear deterrence policy from the initial development of nuclear weapons until the present day. This is not a definitive history but an introduction to deterrence policy for those with limited background in this area. The concept of deterrence is discussed in several ways--in a general description of deterrence theory, in an historical review of nuclear policy evolution, in a discussion of the future of deterrence, in historical examples of deterrence successes and failures, and in a review of significant contributors to the study of nuclear policy. The intent is to present an authoritative, unclassified account. To accomplish this, to the extent possible, primary source documents were located and utilized if they were available and declassified. These included unclassified Presidential nuclear policy guidance from the Presidential libraries, official JCS histories and State Department Foreign Relations histories. The writings of noted nuclear strategists and historians were also valuable resources for this primer on U.S. strategic nuclear policy.

More Details

Tectonic Setting and Characteristics of Natural Fractures in Mesaverde and Dakota Reservoirs of the San Juan Basin, New Mexico and Colorado

Lorenz, John C.; Cooper, Scott P.

A set of vertical extension fractures, striking N-S to NNE-SSW but with local variations, is present in both the outcrop and subsurface in both Mesaverde and Dakota sandstones. Additional sets of conjugate shear fractures have been recognized in outcrops of Dakota strata and may be present in the subsurface. However, the deformation bands prevalent locally in outcrops in parts of the basin as yet have no documented subsurface equivalent. The immature Mesaverde sandstones typically contain relatively long, irregular extension fractures, whereas the quartzitic Dakota sandstones contain short, sub-parallel, closely spaced, extension fractures, and locally conjugate shear planes as well. Outcrops typically display secondary cross fractures which are rare in the subsurface, although oblique fractures associated with local structures such as the Hogback monocline may be present in similar subsurface structures. Spacings of the bed-normal extension fractures are approximately equal to or less than the thicknesses of the beds in which they formed, in both outcrop and subsurface. Fracture intensities increase in association with faults, where there is a gradation from intense fracturing into fault breccia. Bioturbation and minimal cementation locally inhibited fracture development in both formations, and the vertical limits of fracture growth are typically at bedding/lithology contrasts. Fracture mineralizations have been largely dissolved or replaced in outcrops, but local examples of preserved mineralization show that the quartz and calcite common to subsurface fractures were originally present in outcrop fractures. North-south trending compressive stresses created by southward indentation of the San Juan dome area (where Precambrian rocks are exposed at an elevation of 14,000 ft) and northward indentation of the Zuni uplift, controlled Laramide-age fracturing. Contemporaneous right-lateral transpressive wrench motion due to northeastward translation of the basin was both concentrated at the basin margins (Nacimiento uplift and Hogback monocline on east and west edges respectively) and distributed across the strata depth.

More Details

AlGaN Materials Engineering for Integrated Multi-Function Systems

Lee, Stephen R.; Casalnuovo, Stephen A.; Mani, Seethambal S.; Mitchell, Christine C.; Waldrip, Karen E.; Guilinger, Terry R.; Kelly, M.; Fleming, J.G.; Santa Tsao, Sylviaines; Follstaedt, D.M.; Wampler, William R.

This LDRD is aimed to place Sandia at the forefront of GaN-based technologies. Two important themes of this LDRD are: (1) The demonstration of novel GaN-based devices which have not yet been much explored and yet are coherent with Sandia's and DOE's mission objectives. UV optoelectronic and piezoelectric devices are just two examples. (2) To demonstrate front-end monolithic integration of GaN with Si-based microelectronics. Key issues pertinent to the successful completion of this LDRD have been identified to be (1) The growth and defect control of AlGaN and GaN, and (2) strain relief during/after the heteroepitaxy of GaN on Si and the separation/transfer of GaN layers to different wafer templates.

More Details

Dynamical Properties of Polymers: Computational Modeling

Curro, John G.

The free volume distribution has been a qualitatively useful concept by which dynamical properties of polymers, such as the penetrant diffusion constant, viscosity, and glass transition temperature, could be correlated with static properties. In an effort to put this on a more quantitative footing, we define the free volume distribution as the probability of finding a spherical cavity of radius R in a polymer liquid. This is identical to the insertion probability in scaled particle theory, and is related to the chemical potential of hard spheres of radius R in a polymer in the Henry's law limit. We used the Polymer Reference Interaction Site Model (PRISM) theory to compute the free volume distribution of semiflexible polymer melts as a function of chain stiffness. Good agreement was found with the corresponding free volume distributions obtained from MD simulations. Surprisingly, the free volume distribution was insensitive to the chain stiffness, even though the single chain structure and the intermolecular pair correlation functions showed a strong dependence on chain stiffness. We also calculated the free volume distributions of polyisobutylene (PIB) and polyethylene (PE) at 298K and at elevated temperatures from PRISM theory. We found that PIB has more of its free volume distributed in smaller size cavities than for PE at the same temperature.

More Details

Advanced Techniques for Real-Time Visualization of Data Intensive Missions

Platzbecker, Mark R.; Ashcraft, Gary W.; Owen, Todd E.; Sturgis, Beverly R.

Engineers at Sandia National Laboratories are combining entertainment industry software with traditional data collection techniques to create an interactive visualization tool. By replacing the usual flight simulator joystick with a telemetry data stream, experimental data is combined with existing three-dimensional (3D) engineering models. Users are immersed in their experiment, allowing interaction with and comprehension of complex data sets. Software tools are currently under development for post flight data visualization, and their usefulness and reusability have been demonstrated on numerous spaced-based programs within Sandia. However, data from remote sensors are subject to transmission errors that yield nonphysical behavior in real-time data visualization applications. We propose to investigate the applicability of real-time processing algorithms and estimation theories, such as Kalman filters, that have been successfully applied in other fields. Results will be integrated into existing postflight visualization tools for Proof-of-Concept validation and for potential integration of real-time applications.

More Details

Further assessment of one- and two-equation turbulence models for hypersonic transitional flows

39th Aerospace Sciences Meeting and Exhibit

Roy, Christopher J.; Blottner, Frederick G.

Hypersonic transitional flows over a flat plate and a sharp cone are studied using four turbulence models: the one-equation eddy viscosity transport model of Spalart-Allmaras, a low Reynolds number κ-ε model, the Menter κ-ω model, and the Wilcox κ-ω model. A framework is presented for the assessment of turbulence models that includes documentation procedures, solution accuracy, model sensitivity, and model validation. The accuracy of the simulations is addressed, and the sensitivities of the models to grid refinement, freestream turbulence levels, and wall y+ spacing are presented. The flat plate skin friction results are compared to the well-established laminar and turbulent correlations of Van Driest. Correlations for the sharp cone are discussed in detail. These correlations, along with recent experimental data, are used to judge the validity of the simulation results for skin friction and surface heating on the sharp cone. The Spalart-Allmaras performs the best with regards to model sensitivity and model accuracy, while the Menter κ-ω model also performs well for these zero pressure gradient boundary layer flows. © 2001 American Institute of Aeronautics & Astronautics.

More Details

Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

Proceedings of SPIE - The International Society for Optical Engineering

Sasaki, Darryl Y.; Cox, Jimmy D.; Gourley, Paul L.

The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers (SAM) of octadecyltrimethoxysilane (OTMS) and N-(triethoxysilylpropyl)-O-polyethylene oxide urethane (TESP), to evaluate the biocompatibility and surface passivation those coatings provide. These films were exposed to solutions containing serum albumin proteins (4 mg/mL), glial cells in culturing media, and glial cells under fluid flow. While the OTMS surface resisted cell spreading and growth under culture conditions, the same surface induced biofouling in a cell flow experiment with a microfluidic structure. Interestingly, the TESP surface, which was supportive of cell adhesion and proliferation under cell culturing conditions, effectively passivated the microfluidic structure to cell adhesion and biofouling. The results suggest that the cell adhesion process is not only dependent on the chemistry of the surface but also on the time allotted to the cell to probe the surface.

More Details

MOCVD-grown, 1.3 μm InGaAsN multiple quantum well lasers incorporating GaAsP strain-compensation layers

Proceedings of SPIE - The International Society for Optical Engineering

Kurtz, S.R.; Allerman, A.A.; Choquette, K.D.

InxGa1-xAs1-yNy quaternary alloys offer the promise of longer wavelength, ≥ 1.3 μm optical transceivers grown on GaAs substrates. To achieve acceptable radiative efficiencies at 1.3 μm, highly-strained InGaAsN quantum wells (x ≈ 0.4, y ≈ 0.005) are being developed as laser active regions. By introducing GaAsP layers into the active region for strain-compensation, gain can be increased using multiple InGaAsN quantum wells. In this work, we report the first strain-compensated, 1.3 μm InGaAsN MQW lasers. Our devices were grown by metal-organic chemical vapor deposition. Lasers with InGaAsN quantum well active regions are proving superior to lasers constructed with competing active region materials. Under pulsed operation, our 1.3 μm InGaAsN lasers displayed negligible blue-shift from the low-injection LED emission, and state-of-the-art characteristic temperature (159 K) was obtained for a 1.3 μm laser.

More Details

Modeling gas separation membranes

Materials Research Society Symposium - Proceedings

Van Swol, Frank

Recent advances in the development and application of self-assembly templating techniques have opened up the possibility of tailoring membranes for specific separation problems. A new self-assembly processing route to generate inorganic membrane films has made it feasible to finely control both the three-dimensional (3D) porosity and the chemical nature of the adsorbing structures. Chemical sites can be added to a porous membrane either after the inorganic scaffolding has been put in place or, alternatively, chemical sites can be co-assembled in a one-step process. To provide guidance to the optimized use of these 'designer' membranes we have developed a substantial modeling program that focuses on permeation through porous materials. The key issues that need to be modeled concern 1) the equilibrium adsorption behavior in a variety of 3D porous structures, ranging from straight pore channels to fractal structures, 2) the transport (i.e. diffusion) behavior in these structures. Enriching the problem is the presence of reactive groups that may be present on the surface. An important part of the design of actual membranes is to optimize these reactive sites with respect to their strength as characterized by the equilibrium constant, and the positioning of these sites on the adsorbing surface. What makes the technological problem challenging is that the industrial application requires both high flux and high selectivity. What makes the modeling challenging is the smallness of the length scale (molecular) that characterizes the surface reaction and the confinement in the pores. This precludes the use of traditional continuum engineering methods. However, we must also capture the 3D connectivity of the porous structure which is characterized by a larger than molecular length scale. We will discuss how we have used lattice models and both Monte Carlo and 3D density functional theory methods to tackle these modeling challenges.

More Details

Bending effects in the frictional energy dissipation in lap joints

Proceedings of the ASME Design Engineering Technical Conference

Heinstein, Martin W.; Segalman, Daniel J.

Frictional energy dissipation in joints is an issue of long-standing interest in the effort to predict damping of built up structures. Even obtaining a qualitative understanding of how energy dissipation depends on applied loads has not yet been accomplished. Goodman[l] postulated that in harmonic loading, the energy dissipation per cycle would go as the cube of the amplitude of loading. Though experiment does support a power-law relationship, the exponent tends to be lower than Goodman predicted. Recent calculations discussed here suggest that the cause of that deviation has to with reshaping of the contact patch over each loading period.

More Details

A convergence analysis of unconstrained and bound constrained evolutionary pattern search

Evolutionary computation

Hart, William E.

We present and analyze a class of evolutionary algorithms for unconstrained and bound constrained optimization on R(n): evolutionary pattern search algorithms (EPSAs). EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. We show that EPSAs can be cast as stochastic pattern search methods, and we use this observation to prove that EPSAs have a probabilistic, weak stationary point convergence theory. This convergence theory is distinguished by the fact that the analysis does not approximate the stochastic process of EPSAs, and hence it exactly characterizes their convergence properties.

More Details

ASTM standards for reactor dosimetry and pressure vessel surveillance

ASTM Special Technical Publication

Griffin, Patrick J.

The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current "state-of-the-art" in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two examples are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new "widget" to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

More Details

Double-Diffusive Finger Convection: Flow Field Evolution in a Hele-Shaw Cell

Water Resources Research

Glass, Robert J.

Double-diffusive finger convection is a hydrodynamic instability that can occur when two components with different diffusivities are oppositely stratified with respect to the fluid density gradient as a critical condition is exceeded. Laboratory experiments were designed using sodium chloride and sucrose solutions in a Hele-Shaw cell. A high resolution, full field, light transmission technique was used to study the development of the instability. The initial buoyancy ratio (R{sub p}), which is a ratio of fluid density contributions by the two solutes, was varied systematically in the experiments so that the range of parameter space spanned conditions that were nearly stable (R{sub p} = 2.8) to those that were moderately unstable (R{sub p} = 1.4). In systems of low R{sub p}, fingers develop within several minutes, merge with adjacent fingers, form conduits, and stall before newer-generated fingers travel through the conduits and continue the process. Solute fluxes in low R{sub p} systems quickly reach steady state and are on the order of 10{sup {minus}6} m{sup 2} sec{sup {minus}1}. In the higher R{sub p} experiments, fingers are slower to evolve and do not interact as dynamically as in the lower R{sub p} systems. Our experiment with initial R{sub p} = 2.8 exhibited flux on the order of that expected for a similar diffusive system (i.e., 10{sup {minus}7} m{sup 2} sec{sup {minus}1}), although the structures were very different than the pattern of transport expected in a diffusing system. Mass flux decayed as t{sup 1/2} in two experiments each with initial R{sub p} = 2.4 and 2.8.

More Details

Highly Unstable Double-Diffusive Finger Convection in a Hele-Shaw Cell: Baseline Experimental Data for Evaluation of Numerical Models

Transport in Porous Media

Pringle, Scott E.; Glass, Robert J.

An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapid progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.

More Details

In Situ Template Generation for Zincophosphate Synthesis Leading to C2H7N4O-ZnPO4 Containing Template-to-Template N--H...O Hydrogen Bonds

International Journal for Inorganic Material

Nenoff, T.M.

The synthesis, structure and some properties of C{sub 2}H{sub 7}N{sub 4}O {center_dot} ZnPO{sub 4} (guanylurea zinc phosphate) are reported. The cationic template was prepared in situ by partial hydrolysis of the neutral 2-cyanoguanidine starting material. The resulting structure contains a new, unprotonated, zincophosphate layer topology as well as unusual N-H-O template-to-template hydrogen bonds which help to stabilize a ''double sandwich'' of templating cations between the inorganic sheets. Crystal data: C{sub 2}H{sub 7}N{sub 4}O {center_dot} ZnPO{sub 4}, M{sub r} = 229.44, monoclinic, P2{sub 1}/c, a = 13.6453 (9) {angstrom}, b = 5.0716 (3) {angstrom}, c = 10.6005 (7) {angstrom}, {beta} = 95.918 (2){sup 0}, V = 729.7 (1) {angstrom}{sup 3}, R(F) = 0.034, wR(F) = 0.034.

More Details

Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

Bliss, David E.; Cameron, Stewart M.; Greives, Kenneth G.; Zutavern, Fred J.

Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

More Details

Range-Gated LADAR Coherent Imaging Using Parametric Up-Conversion of IR and NIR Light for Imaging with a Visible-Range Fast-Shuttered Intensified Digital CCD Camera

Bliss, David E.; Cameron, Stewart M.; Zutavern, Fred J.

Research is presented on infrared (IR) and near infrared (NIR) sensitive sensor technologies for use in a high speed shuttered/intensified digital video camera system for range-gated imaging at ''eye-safe'' wavelengths in the region of 1.5 microns. The study is based upon nonlinear crystals used for second harmonic generation (SHG) in optical parametric oscillators (OPOS) for conversion of NIR and IR laser light to visible range light for detection with generic S-20 photocathodes. The intensifiers are ''stripline'' geometry 18-mm diameter microchannel plate intensifiers (MCPIIS), designed by Los Alamos National Laboratory and manufactured by Philips Photonics. The MCPIIS are designed for fast optical shattering with exposures in the 100-200 ps range, and are coupled to a fast readout CCD camera. Conversion efficiency and resolution for the wavelength conversion process are reported. Experimental set-ups for the wavelength shifting and the optical configurations for producing and transporting laser reflectance images are discussed.

More Details

Internet-Based Calibration of a Multifunction Calibrator

Bunting Baca, Lisa A.; Duda, Leonard E.; Walker, Russell M.

A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multijunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

More Details

X-Ray Powder Diffraction Study of Synthetic Palmierite, K{sub 2}Pb(SO{sub 4}){sub 2}

Powder Diffraction

Tissot, Ralph G.; Rodriguez, M.A.; Sipola, Diana L.; Voigt, James A.

Palmierite (K{sub 2}Pb(SO{sub 4}){sub 2}) has been prepared via a chemical synthesis method. Intensity differences were observed when X-ray powder data from the newly synthesized compound were compared to the published powder diffraction card (PDF) 29-1015 for Palmierite. Investigation of these differences indicated the possibility of preferred orientation and/or chemical inhomogeneity affecting intensities, particularly those of the basal (00{ell}) reflections. Annealing of the Palmierite was found to reduce the effects of preferred orientation. Electron microprobe analysis confirmed K:Pb:S as 2:1:2 for the annealed Palmierite powder. Subsequent least-squares refinement and Rietveld analysis of the annealed powder showed peak intensities very close to that of a calculated Palmierite pattern (based on single crystal data), yet substantially higher than many of the PDF 29-1015 published intensities. Further investigation of peak intensity variation via calculated patterns suggested that the intensity discrepancies between the annealed sample and those found in PDF 29-1015 were potentially due to chemical variation in the K{sub 2}Pb(SO{sub 4}){sub 2} composition. X-ray powder diffraction and crystal data for Palmierite are reported for the annealed sample. Palmierite is Trigonal/Hexagonal with unit cell parameters a = 5.497(1){angstrom}, c = 20.864(2) {angstrom}, space group R-3m (166), and Z = 3.

More Details

A Semi-Analytical Solution for Steady Infiltration in Unsaturated Fractured Rock

Water Resources Research

Ho, Clifford K.

A semi-analytical solution is developed for one-dimensional steady infiltration in unsaturated fractured rock. The differential form of the mass conservation equation is integrated to yield an analytical expression relating elevation to a function of capillary pressure and relative permeability of the fracture and rock matrix. Constitutive relationships for unsaturated flow in this analysis are taken from van Genuchten [1980] and Mualem [1976], but alternative relations can also be implemented in the integral solution. Expressions are presented for the liquid saturations and pore velocities in the fracture, matrix, and effective continuum materials as a function of capillary pressure and elevation. Results of the analytical solution are applied to examples of infiltration in fractured rock consisting of both homogeneous and composite (layered) domains. The analytical results are also compared to numerical simulations to demonstrate the use of the analytical solution as a benchmarking tool to address computational issues such as grid refinement.

More Details

Monitoring Dielectric Thin-Film Production on Product Wafers Using Infrared Emission Spectroscopy

Applied Spectroscopy

Haaland, David M.

Monitoring of dielectric thin-film production in the microelectronics industry is generally accomplished by depositing a representative film on a monitor wafer and determining the film properties off line. One of the most important dielectric thin films in the manufacture of integrated circuits is borophosphosilicate glass (BPSG). The critical properties of BPSG thin films are the boron content, phosphorus content and film thickness. We have completed an experimental study that demonstrates that infrared emission spectroscopy coupled with multivariate analysis can be used to simultaneous y determine these properties directly from the spectra of product wafers, thus eliminating the need of producing monitor wafers. In addition, infrared emission data can be used to simultaneously determine the film temperature, which is an important film production parameter. The infrared data required to make these determinations can be collected on a time scale that is much faster than the film deposition time, hence infrared emission is an ideal candidate for an in-situ process monitor for dielectric thin-film production.

More Details

Elevated Temperature Creep Properties of Conventional 50Au-50Cu and 47Au 50Cu-3Ni Braze Alloys

Stephens, John J.; Schmale, David T.

The elevated temperature creep properties of the 50Au-50Cu wt% and 47Au-50Cu-3Ni braze alloys have been evaluated over the temperature range 250-850 C. At elevated temperatures, i.e., 450-850 C, both alloys were tested in the annealed condition (2 hrs. 750 C/water quenched). The minimum strain rate properties over this temperature range are well fit by the Garofalo sinh equation. At lower temperatures (250 and 350 C), power law equations were found to characterize the data for both alloys. For samples held long periods of time at 375 C (96 hrs.) and slowly cooled to room temperature, an ordering reaction was observed. For the case of the 50Au-50Cu braze alloy, the stress necessary to reach the same, strain rate increased by about 15% above the baseline data. The limited data for ordered 47Au-50Cu-3Ni alloy reflected a,smaller strength increase. However, the sluggishness of this ordering reaction in both alloys does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

More Details

Calcium-Dependent Conformation of a Heme and Fingerprint Peptide of the Di-Heme Cytochrome c Peroxidase from Paracoccus Pantotrophus

Biochemistry

Shelnutt, John A.

The structural changes in the heme macrocycle and substituents caused by binding of Ca{sup 2+} to the diheme cytochrome c peroxidase from Paracoccuspantotrophus were clarified by resonance Raman spectroscopy of the inactive filly oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca{sup 2+}-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca{sup 2+}or Mg{sup 2+}. This increase in the heme distortion also explains the red shift in the Soret absorption band that occurs upon Ca{sup 2+} binding. Changes also occur in the low frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon CM{sup 2+} binding to site I. These structural changes, possibly enhanced in the semi-reduced form of the enzyme, may lead to loss of the sixth ligand at the peroxidatic heme and activation of the enzyme.

More Details

Pretest Round Robin Analysis of 1:4-Scale Prestressed Concrete Containment Vessel Model

Hessheimer, Michael F.; Luk, Vincent K.; Klamerus, Eric W.

The purpose of the program is to investigate the response of representative scale models of nuclear containment to pressure loading beyond the design basis accident and to compare analytical predictions to measured behavior. This objective is accomplished by conducting static, pneumatic overpressurization tests of scale models at ambient temperature. This research program consists of testing two scale models: a steel containment vessel (SCV) model (tested in 1996) and a prestressed concrete containment vessel (PCCV) model, which is the subject of this paper.

More Details

An Inertial-Fusion Z-Pinch Power Plant Concept

Nuclear Fusion

Derzon, Mark S.; Rochau, Gary E.; Olson, Craig L.; Slutz, Stephen A.; Zamora, Antonio J.

With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30 year plant operation. The implication of this low radioactivity is that a z-pinch driven power plant may not require deep geologic waste storage.

More Details

Statistical Properties of Antenna Impedance in an Electrically Large Cavity

IEEE Transactions on Antennas and Propagation

Warne, Larry K.; Hudson, Howard G.; Johnson, William Arthur.; Jorgenson, Roy E.; Stronach, Stephen L.

This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

More Details

Hexahedral Mesh Untangling

Engineering with Computers

Knupp, Patrick K.

We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.

More Details

Quantitative Temperature Imaging in Gas-Phase Turbulent Thermal Convection by Laser-Induced Fluorescence of Acetone

Kearney, S.P.; Reyes, F.V.

In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.

More Details

Analysis of Patent Databases Using VxInsight

Boyack, Kevin W.; Wylie, Brian N.; Davidson, George S.; Johnson, David L.

We present the application of a new knowledge visualization tool, VxInsight, to the mapping and analysis of patent databases. Patent data are mined and placed in a database, relationships between the patents are identified, primarily using the citation and classification structures, then the patents are clustered using a proprietary force-directed placement algorithm. Related patents cluster together to produce a 3-D landscape view of the tens of thousands of patents. The user can navigate the landscape by zooming into or out of regions of interest. Querying the underlying database places a colored marker on each patent matching the query. Automatically generated labels, showing landscape content, update continually upon zooming. Optionally, citation links between patents may be shown on the landscape. The combination of these features enables powerful analyses of patent databases.

More Details

Hall-Petch hardening in pulsed laser deposited nickel and copper thin films

Materials Research Society Symposium - Proceedings

Knapp, J.A.; Follstaedt, D.M.; Banks, J.C.; Myers, S.M.

Very fine-grained Ni and Cu films were formed using pulsed laser deposition onto fused silica substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, with finite-element modeling used to evaluate the properties of the layers separately from those of the substrate. Some Ni films were also examined after annealing to 350 and 450 °C to enlarge the grain sizes. These preliminary results show that the observed hardnesses are consistent with a simple extension of the Hall-Petch relationship to grain sizes as small as 11 nm for Ni and 32 nm for Cu.

More Details

Diffusion Kinetics in the Pd/Cu(001) Surface Alloy

Physical Review Letters

Swartzentruber, Brian S.; Bartelt, Norman C.

We use atom-tracking scanning tunneling microscopy to study the diffusion of Pd in the Pd/Cu(001) surface alloy. By following the motion of individual Pd atoms incorporated in the surface, we show that Pd diffuses by a vacancy-exchange, mechanism. We measure an effective activation energy for the diffusion of incorporated Pd atoms of 0.88 eV, which is consistent with an ab initio calculated barrier of 0.94 eV.

More Details

The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

Oil Industry History Journal

Lorenz, John C.

Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

More Details

Representation of Random Shock via the Karhunen Loeve Expansion

Paez, Thomas L.

Shock excitations are normally random process realizations, and most of our efforts to represent them either directly or indirectly reflect this fact. The most common indirect representation of shock sources is the shock response spectrum. It seeks to establish the damage-causing potential of random shocks in terms of responses excited in linear, single-degree-of-freedom systems. This paper shows that shock sources can be represented directly by developing the probabilistic and statistical structure that underlies the random shock source. Confidence bounds on process statistics and probabilities of specific excitation levels can be established from the model. Some numerical examples are presented.

More Details

The Study of Phosphors Efficiency and Homogeneity using a Nuclear Microprobe

Doyle, Barney L.

Ion Beam Induced Luminescence (IBIL) and Ion Beam Induced Charge Collection (IBICC) have been applied in the study of the luminescence emission efficiency and investigation of the homogeneity of the luminescence emission in phosphors. The IBIL imaging was performed by using sharply focused ion beams or broad/partially-focused ion beams. The luminescence emission homogeneity in samples was examined to reveal possible distributed crystal-defects that may lead to the inhomogeneity of the luminescence emission in samples.The purpose of the study is to search for suitable luminescent thin films that have high homogeneity of luminescence emission, large IBIL efficiency under heavy ion excitation, and can be placed as a thin layer on the top of microelectronic devices to be analyzed with Ion Photon Emission Microscopy (IPEM). The emission yield was found to be low for organic materials, due to saturation of the light output dependence on the energy deposition of heavy ions. The emission yield of a typical Bicron plastic scintillator is about 70 photons/ion/micron. Inorganic materials may have higher IBIL yield under high-energy and heavy-ion excitation, but the challenging problem is the inhomogeneity of the IBIL emission. The IBIL image techniques are applied in the investigation of the homogeneity of a GaN epitaxial thin film, a zircon single crystal and a thin layer coated by Thiogallate(EuII) ceramic.

More Details

Experimental Results on Statistical Approaches to Page Replacement Policies

Leung, Vitus J.

This paper investigates the questions of what statistical information about a memory request sequence is useful to have in making page replacement decisions: Our starting point is the Markov Request Model for page request sequences. Although the utility of modeling page request sequences by the Markov model has been recently put into doubt, we find that two previously suggested algorithms (Maximum Hitting Time and Dominating Distribution) which are based on the Markov model work well on the trace data used in this study. Interestingly, both of these algorithms perform equally well despite the fact that the theoretical results for these two algorithms differ dramatically. We then develop succinct characteristics of memory access patterns in an attempt to approximate the simpler of the two algorithms. Finally, we investigate how to collect these characteristics in an online manner in order to have a purely online algorithm.

More Details

The Xyce Parallel Electronic Simulator - An Overview

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Watts, Herman A.; Waters, Lon J.; Schells, Regina L.; Wix, Steven D.

The Xyce{trademark} Parallel Electronic Simulator has been written to support the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on providing the capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). In addition, they are providing improved performance for numerical kernels using state-of-the-art algorithms, support for modeling circuit phenomena at a variety of abstraction levels and using object-oriented and modern coding-practices that ensure the code will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows.

More Details

Recent Advances in AC-DC Transfer Measurements Using Thin-Film Thermal Converters

Wunsch, Thomas F.; Manginell, Ronald P.; Solomon, Otis M.

New standards for ac current and voltage measurements, thin-film multifunction thermal converters (MJTCS), have been fabricated using thin-film and micro-electro-mechanical systems (MEMS) technology. Improved sensitivity and accuracy over single-junction thermoelements and targeted performance will allow new measurement approaches in traditionally troublesome areas such as the low frequency and high current regimes. A review is presented of new microfabrication techniques and packaging methods that have resulted from a collaborative effort at Sandia National Laboratories and the National Institute of Standards and Technology (MHZ).

More Details

Optical spectroscopy of ingan epilayers in the low indium composition regime

Materials Research Society Symposium - Proceedings

Crawford, M.H.; Han, J.; Banas, M.A.; Myers, S.M.; Peterscn, G.A.; Figiel, J.J.

Photoluminescence (PL) spectroscopy was carried out on a series of Si-doped bulk InGaN films in the low indium (In) composition regime. Room temperature PL showed a factor of 25 increase in integrated intensity as the In composition was increased from 0 to 0.07. Temperature dependent PL data was fit to an Arrhenius equation to reveal an increasing activation energy for thermal quenching of the PL intensity as the In composition is increased. Time resolved PL measurements revealed that only the sample with highest In ( x=0.07) showed a strong spectral variation in decay time across the T=4K PL resonance, indicative of recombination from localized states at low temperatures. The decay times at room temperature were non-radiatively dominated for all films, and the room temperature (non-radiative) decay times increased with increasing In, from 50-230 psec for x=0-0.07. Our data demonstrate that non-radiative recombination is less effective with increasing In composition. © 2000 Materials Research Society.

More Details

On the late-time behavior of tracer test breakthrough curves

Water Resources Research

Mckenna, Sean A.; Meigs, Lucy C.

We investigated the late-time (asymptotic) behavior of tracer test breakthrough curves (BTCs) with rate-limited mass transfer (e.g., in dual-porosity or multiporosity systems) and found that the late-time concentration c is given by the simple expression c = tad{c0g - [m0(∂g/∂t)]}, for t ≫ tad and tα ≫ tad, where tad is the advection time, c0 is the initial concentration in the medium, m0 is the zeroth moment of the injection pulse, and tα is the mean residence time in the immobile domain (i.e., the characteristic mass transfer time). The function g is proportional to the residence time distribution in the immobile domain; we tabulate g for many geometries, including several distributed (multirate) models of mass transfer. Using this expression, we examine the behavior of late-time concentration for a number of mass transfer models. One key result is that if rate-limited mass transfer causes the BTC to behave as a power law at late time (i.e., c ̃ t-k), then the underlying density function of rate coefficients must also be a power law with the form αk-3 as α → 0. This is true for both density functions of first-order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the experiment indicate a mean residence time longer than the experiment, and possibly an infinite residence time, and also suggest an effective rate coefficient that is either undefined or changes as a function of observation time. We apply our analysis to breakthrough curves from single-well injection-withdrawal tests at the Waste Isolation Pilot Plant, New Mexico. We investigated the late-time (asymptotic) behavior of tracer test breakthrough curves (BTCs) with rate-limited mass transfer (e.g., in dual-porosity or multiporosity systems) and found that the late-time concentration c is given by the simple expression c = tad{c0g - [m0(∂g/∂t)]}, for t ≫ tad and tα ≫ t ad, where tad is the advection time, c0 is the initial concentration in the medium, m0 is the zeroth moment of the injection pulse, and tα is the mean residence time in the immobile domain (i.e., the characteristic mass transfer time). The function g is proportional to the residence time distribution in the immobile domain; we tabulate g for many geometries, including several distributed (multirate) models of mass transfer. Using this expression, we examine the behavior of late-time concentration for a number of mass transfer models. One key result is that if rate-limited mass transfer causes the BTC to behave as a power law at late time (i.e., c t-k), then the underlying density function of rate coefficients must also be a power law with the form αk-3 as α → 0. This is true for both density functions of first-order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the experiment indicate a mean residence time longer than the experiment, and possibly an infinite residence time, and also suggest an effective rate coefficient that is either undefined or changes as a function of observation time. We apply our analysis to breakthrough curves from single-well injection-withdrawal tests at the Waste Isolation Pilot Plant, New Mexico.

More Details

Null-steering viewpoint of interferometric SAR

International Geoscience and Remote Sensing Symposium (IGARSS)

Bickel, Douglas L.

Interferometric synthetic aperture radar (IFSAR) extends the two-dimensional imaging capability of traditional synthetic aperture radar to three-dimensions by using an aperture in the elevation plane to estimate the 3-D structure of the target. The operation of this additional aperture can be viewed from a null-steering point of view rather than the traditional phase determination point of view. Knowing that IFSAR can be viewed from the null-steering perspective allows us to take advantage of the mathematical foundation developed for null-steering arrays. In addition, in some problems of interest in IFSAR the null-steering perspective provides better intuition and suggests alternative solutions. One example is the problem of estimating building height where layover is present.

More Details
Results 88701–88800 of 96,771
Results 88701–88800 of 96,771