Publications

5 Results

Search results

Jump to search filters

Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water

Hightower, Marion M.; Morrow, Charles W.; Covan, John M.; Gritzo, Louis A.; Luketa, Anay L.; Tieszen, Sheldon R.; Wellman, Gerald W.; Irwin, Michael J.; Kaneshige, Michael J.; Melof, Brian M.

While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

More Details

Hydrogen peroxide-based propulsion and power systems

Keese, David L.; Melof, Brian M.; Ingram, Brian I.; Escapule, William R.; Grubelich, Mark C.; Ruffner, Judith A.

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

More Details

Autonomous microexplosives subsurface tracing system final report

Warpinski, Norman R.; Ingram, Brian I.; Melof, Brian M.; Engler, Bruce P.; Grubelich, Mark C.; Kravitz, Stanley H.; Rivas, Raul R.; Dulleck, George R.

The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

More Details

Less-than-lethal "flashbang" diversionary device

Bender, Susan F.; Anderson, Heidi A.; Steyskal, Michele S.; Ingram, Brian I.; Melof, Brian M.; Fleming, Kevin J.; Broyles, Theresa A.; Mulligan, Edward J.; Covert, Timothy T.

Diversionary devices such as flashbang grenades are used in a wide variety of military and law-enforcement operations. They function to distract and/or incapacitate adversaries in scenarios ranging from hostage rescue to covert strategic paralysis operations. There are a number of disadvantages associated with currently available diversionary devices. Serious injuries and fatalities have resulted from their use both operationally and in training. Because safety is of paramount importance, desired improvements to these devices include protection against inadvertent initiation, the elimination of the production of high-velocity fragments, less damaging decibel output and increased light output. Sandia National Laboratories has developed a next-generation diversionary flash-bang device that will provide the end user with these enhanced safety features.

More Details

Investigation of hypergolic fuels with hydrogen peroxide

37th Joint Propulsion Conference and Exhibit

Melof, Brian M.; Grubelich, Mark C.

A low toxicity, high performance, hypergolic, bipropellant system is desired to replace conventional nitrogen tetroxide (NTO) and hydrazine propulsion systems. Hydrogen peroxide exothermically decomposes to water, and oxygen, making it an ideal oxidizer for more environmentally friendly propulsion systems. Unfortunately, the choice of fuel for such systems is not as clear. Many factors such as ignition delay, performance, toxicity, storability, and cost must be considered. Numerous candidate fuels and fuel/catalyst mixtures were screened using a simple laboratory setup and visual observation. A mixture of ethanolamine and 1% copper (II) chloride was found to rapidly ignite with 90% hydrogen peroxide. Hydrogen peroxide and ethanolamine are much less toxic than NTO and hydrazine. Hydrogen peroxide and ethanolamine have a calculated specific impulse of 245 seconds compared to 284 seconds for NTO and monomethyl hydrazine. A low-freezing blend of furfuryl alcohol (47.5%), ethanolamine (47.5%), and copper (II) chloride (5%) was successfully test fired in a small rocket engine with both 90% and 99% hydrogen peroxide. Hypergolic ignition of this mixture was achieved with 70% hydrogen peroxide. Our quest for a non-toxic hypergol began by researching the literature. Most current low freezing points, exhibit good performance, and are non-toxic compared to hydrazines.1 Unfortunately, hypergolic ignition was only achieved after adding a large amount (>10%) of manganese based catalyst.2-4 Metallic catalysts are toxic and impair performance, so low concentrations are desired. In addition, an insoluble catalyst may not remain in uniform suspension, converting a hypergolic fuel into one with inconsistent age related performance. We wanted to find a fuel that was hypergolic by itself, or that could be made so with a much smaller addition of metallic catalyst.

More Details
5 Results
5 Results