Electrochemical and Photophysical Properties of electropolymerized Thieno[32-b]thiophene and 22'-Bithiophene polymers: A comparative study
Synthetic Metals
Abstract not provided.
Synthetic Metals
Abstract not provided.
As George W. Bush recognized in November 2001, "Infectious diseases make no distinctions among people and recognize no borders." By their very nature, infectious diseases of natural or intentional (bioterrorist) origins are capable of threatening regional health systems and economies. The best mechanism for minimizing the spread and impact of infectious disease is rapid disease detection and diagnosis. For rapid diagnosis to occur, infectious substances (IS) must be transported very quickly to appropriate laboratories, sometimes located across the world. Shipment of IS is problematic since many carriers, concerned about leaking packages, refuse to ship this material. The current packaging does not have any ability to neutralize or kill leaking IS. The technology described here was developed by Sandia National Laboratories to provide a fail-safe packaging system for shipment of IS that will increase the likelihood that critical material can be shipped to appropriate laboratories following a bioterrorism event or the outbreak of an infectious disease. This safe and secure packaging method contains a novel decontaminating material that will kill or neutralize any leaking infectious organisms; this feature will decrease the risk associated with shipping IS, making transport more efficient. 3 DRAFT4
This LDRD is aimed to place Sandia at the forefront of GaN-based technologies. Two important themes of this LDRD are: (1) The demonstration of novel GaN-based devices which have not yet been much explored and yet are coherent with Sandia's and DOE's mission objectives. UV optoelectronic and piezoelectric devices are just two examples. (2) To demonstrate front-end monolithic integration of GaN with Si-based microelectronics. Key issues pertinent to the successful completion of this LDRD have been identified to be (1) The growth and defect control of AlGaN and GaN, and (2) strain relief during/after the heteroepitaxy of GaN on Si and the separation/transfer of GaN layers to different wafer templates.
Three years ago, production requirements for a T73-tempered aluminium 7075 (Al 7075-T73) component were curtailed and the ``in-process`` parts were stored. During recent attempts to complete processing, visible defects were discovered in this component. Defects at such an early stage in the 20+ year lifetime of the component pose reliability concerns. Chemical and microstructural analysis, mechanical testing, and corrosion evaluation were performed to determine the impact of the defects on material properties.
The purpose of publishing the minutes of this workshop is to document the content of the presentations and the direction of the discussions at the workshop as a means of fostering collaborative research and development on chromate replacements throughout the defense, automotive, aerospace, and packaging industries. The goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries to discuss new coating ideas, testing methods, and coating preparation techniques from the perspective not only of end user, but also from the perspective of coating supplier, developer, and researcher. To this end, we succeeded because of the wide-ranging interests of attendees present in the more than 60 workshop registrants. It is our hope that future workshops, not only this one but others like it throughout government and industry, can benefit from the recorded minutes of our meeting and use them as a starting point for future discussions of the directions for chromate replacements in light metal finishing.
Electrochemically formed porous silicon (PS) was reported in 1991 to exhibit visible photoluminescence. This discovery could lead to the use of integrated silicon-based optoelectronic devices. This LDRD addressed two general goals for optical emission from Si: (1) investigate the mechanisms responsible for light emission, and (2) tailor the microstructure and composition of the Si to obtain photoemission suitable for working devices. PS formation, composition, morphology, and microstructure have been under investigation at Sandia for the past ten years for applications in silicon-on-insulator microelectronics, micromachining, and chemical sensors. The authors used this expertise to form luminescent PS at a variety of wavelengths and have used analytical techniques such as in situ Raman and X-ray reflectivity to investigate the luminescence mechanism and quantify the properties of the porous silicon layer. Further, their experience with ion implantation in Si lead to an investigation into alternate methods of producing Si nanostructures that visibly luminesce.
Goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries (defense, automotive, aerospace, packaging) to discuss new coating ideas from the perspective not only of end user, but also the coating supplier, developer, and researcher. The following are included in this document: workshop agenda, list of attendees, summary of feedback, workshop notes compiled by organizers, summaries of Sessions II and IV by session moderators, and vugraphs and abstracts.
We describe a Silicon-on-Insulator (SOI) structure for high voltage BICMOS uniquely suited to the use of porous silicon (PS). In this SOI structure, bulk, high speed bipolar devices are readily integrated with CMOS high voltage and logic devices (smart power). To investigate the processing compatibility of PS with this structure, we measured breakdown strength and etch rate of thermally treated PS in 7:1 buffered oxide etch (BOE) and determined that they can approach values typical of thermal silicon oxides/nitrides. 7 refs., 2 figs.