Publications

3 Results

Search results

Jump to search filters

Highly Unstable Double-Diffusive Finger Convection in a Hele-Shaw Cell: Baseline Experimental Data for Evaluation of Numerical Models

Transport in Porous Media

Pringle, Scott E.; Glass, Robert J.

An experimental investigation was conducted to study double-diffusive finger convection in a Hele-Shaw cell by layering a sucrose solution over a more-dense sodium chloride (NaCl) solution. The solutal Rayleigh numbers were on the order of 60,000, based upon the height of the cell (25 cm), and the buoyancy ratio was 1.2. A full-field light transmission technique was used to measure a dye tracer dissolved in the NaCl solution. They analyze the concentration fields to yield the temporal evolution of length scales associated with the vertical and horizontal finger structure as well as the mass flux. These measures show a rapid progression through two early stages to a mature stage and finally a rundown period where mass flux decays rapidly. The data are useful for the development and evaluation of numerical simulators designed to model diffusion and convection of multiple components in porous media. The results are useful for correct formulation at both the process scale (the scale of the experiment) and effective scale (where the lab-scale processes are averaged-up to produce averaged parameters). A fundamental understanding of the fine-scale dynamics of double-diffusive finger convection is necessary in order to successfully parameterize large-scale systems.

More Details

Aperture field measurement in Transparent Rough Walled Fractures Using Two-Dimensional Full Field Light Transmission

Pringle, Scott E.

Experimentation in transparent fractures where light transmission techniques are used to measure aperture, dye concentration, and phase distribution fields can enhance our understanding of single and multi-phase flow and transport. Here, we evaluate and improve the method for aperture field measurement in transparent analog fractures and replicas of natural fractures. The primary sources of error in the measurements are: signal noise (both temporal and spatial) from the charge-coupled-device (CCD) used to measure light intensities transmitted through the fracture; non-linearity of light absorbance of the dyed solution used to fill the fracture; and refraction of light passing through the fracture. We find that each of these error sources can be minimized to optimize precision and accuracy. Our measurements of the aperture field of a -150 x 300 mm analog test fracture at a spatial resolution of 0.159 x 0.159 mm ( 2x106 points) demonstrate a root-mean- square error over the field of O.9% (0.002 mm) of the mean aperture (0.222 mm). Though the results presented here are specific to our test fracture and measurement system, the general approach can be applied to other digital imaging techniques based on energy absorbance.

More Details

Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

Water Resources Research

Pringle, Scott E.

Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity to error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.

More Details
3 Results
3 Results