Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom-built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto-optic tunable filter to provide continuously tunable fluorescence excitation with a 1-nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.
New low-temperature combustion (LTC) strategies can reduce both NOx and soot emissions from compression-ignition engines, but unburned hydrocarbon (UHC) emissions typically increase. Incylinder UHC evolution can be marked by formaldehyde, an intermediate species in the combustion process. Formaldehyde is formed during the first stage of ignition of diesel-like fuels, and it persists along with UHC in regions that do not achieve complete combustion. During the second stage of ignition, fuel and formaldehyde are largely consumed as OH radicals become prominent. The appearance of OH therefore indicates second-stage ignition and relatively complete combustion of fuel. Simultaneous planar laser-induced fluorescence (PLIF) images of formaldehyde and OH are acquired for two LTC conditions with different ignition delays, using neat n-heptane fuel. For both cases, formaldehyde PLIF is initially observed throughout the jet. Later, OH PLIF first appears downstream in the jet, where formaldehyde and UHC are locally consumed. For the shorter ignition-delay condition, OH PLIF quickly appears upstream locally where formaldehyde PLIF decreases, marking second-stage ignition and consumption of formaldehyde and UHC. For the longer ignition-delay condition, however, OH PLIF does not appear upstream, even late in combustion. Rather, formaldehyde PLIF, and therefore UHCs, persist near the injector late in combustion, indicating that regions near the injector do not achieve complete combustion, and may contribute to UHC emissions for the longer ignition delay condition.
As the amount of real time data collected during drilling continues to rise, sophisticated methods for analyzing and displaying data are needed to make sense out of large volumes of data. This paper describes a novel use of the concepts of computational geometry to analyze and display data from a downhole drilling data tool. The use of a mathematical transformation called a convex hull allows one to create a boundary around a set (cloud) of data points. This is most easily visualized in two dimensions as putting a rubber band around the set of points. Imagine that the rubber band is such that it will be tightly stretched when it is around all the points, so that certain points in the data cloud dictate the resulting outline. A convex hull software routine, the best known of which is the"qhull" program from the University of Minnesota, fits line segments around a cloud of points in up to nine dimensions. Utilizing the convex hull output one can calculate the volume in 3-D or area in 2-D described by data clouds. The result is used as an indicator of bit and drill string behavior. Copyright 2007, Society of Petroleum Engineers.
Over the years, researchers have been investigating large-scale pool fores, both experimentally and numerically, because of the risk they pose during transport accidents. In the course of developing and validating computational models, researchers have come to realize that knowledge of the soot concentration, temperature and optical properties within fires is required to quantify the amount of heat transferred. In turn, such knowledge may help in understanding the dynamics of fires, particularly large accidental ones.
A shear test was used to investigate the effect of shielding gas (Argon, Nitrogen and air) on the mechanical properties of laser spot welds in Fe-28Ni-17Co alloy (Kovar). The load vs. displacement curves obtained, while superficially resembling those of a standard tensile test, were quite non-reproducible, and obscured the differences due to process conditions. Fractographic examination of the samples and analysis of the testing conditions led to significant conclusions about how to correctly interpret the shear test results, which in turn enabled a determination of the real effects of the change in shielding gas. Several different types of fracture morphology were noted, depending upon how the fracture surface developed relative to the original weld. This resulted in the disparate nature of the load-displacement curves. The results of the shear testing, fractography and metallography will be used to support interpretation of the differences found with respect to porosity formation, strength and work hardening behavior.
Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Robertson, Lawrence M.; Lane, Steven A.; Ingram, Brea R.; Hansen, Eric J.; Babuska, Vit; Goodding, James; Mimovich, Mark; Mehle, Gregory; Coombs, Doug; Ardelean, Emil V.
A top level overview of the effect cables have on the dynamic response of precision structures is presented. The focus of this paper is on precision, low-damping, low-first modal frequency space structures where cables are not implicitly designed to be in the load path. The paper presents the top-level, Phase I results which include pathfinder tests, an industry/government/academia survey, modeling and testing of individual cable bundles, and modeling and testing of cables on a simple structure. The end goal is to discover a set of practical approaches for updating well defined dynamical models of cableless structures. Knowledge of the cable type, position and tie-down method is assumed to be known. Simulation sensitivity analysis of the effect cables have on a precision structure has also been completed. Each section of the paper will focus on the details of each area.
Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
Ardelean, Emil V.; Goodding, James C.; Mehle, Gregory; Coombs, Douglas M.; Babuska, Vit; Robertson, Lawrence M.; Lane, Steven A.; Ingram, Brea R.; Hansen, Eric J.
This paper presents experimental results and modeling aspects for electrical power and signal cable harnesses used for space applications. Dynamics of large precision structures can be significantly influenced by subsystems such as electrical cables and harnesses as the structural mass of those structures tends to become smaller, and the quantity of attached cables continues to increase largely due to the ever increasing complexity of such structures. Contributions of cables to structural dynamic responses were observed but never studied, except for a low scale research effort conducted at the Air Force Research Laboratory, Space Vehicles Directorate (AFRL/VSSV). General observations were that at low frequencies cables have a mass loading effect while at higher frequencies they have a dissipative effect. The cables studied here adhere to space industry practices, identified through an extensive industry survey. Experimental procedures for extracting structural properties of the cables were developed. The structural properties of the cables extracted from the extensive experimental database that is being created can be used for numerical modeling of cabled structures. Explicit methods for analytical modeling of electrical cables attached to a structure in general are yet to be developed and the goal of this effort is to advance the state of the art in modeling cable harnesses mounted on lightweight spacecraft structures.
Signal and power harnesses on spacecraft buses and payloads can alter structural dynamics, as has been noted in previous flight programs. The community, however, has never undertaken a thorough study to understand the impact of harness dynamics on spacecraft structures. The Air Force Research Laboratory is leading a test and analysis program to develop fundamental knowledge of how spacecraft harnesses impact dynamics and develop tools that structural designers could use to achieve accurate predictions of cable-dressed structures. The work described in this paper involved a beam under simulated free boundary conditions that served as a validation test bed for model development.
Verification and validation of software in the field of scientific computing is increasingly being recognized as a critical part of the software, algorithm, and model development cycle. Multi-mechanics coupling represents an important and challenging role in providing confidence in the integrated multi-mechanics codes. This paper presents an overview of the math models implemented within the Sandia National Laboratories Advanced Simulation and Computing SIERRA Mechanics code project that supports the engulfed object-in-a-fire scenario. This scenario is characterized by coupling turbulent fluid mechanics, combustion, soot generation and transport, participating media radiation (PMR), thermal conduction and in the case of propellant fires, reacting Lagrangian particles. Attaining an adequate state of code verification for such a complex engineering mechanics scenario represents a daunting challenge. A systematic approach is therefore required. Examples of single and multiple mechanics verification methodologies will be presented.
Current published models for predicting squeeze film damping (SFD), which are based on different assumptions, give widely different results in the free-molecule regime. The work presented here provides experimental data for validating SFD models in that regime. The test device was an almost rectangular micro plate supported by beam springs. The structure was base-excited. The rigid plate oscillated vertically while staying parallel to the substrate. The velocities of the plate and of the substrate were measured with a laser Doppler vibrometer and a microscope. The damping ratio was calculated by performing modal analysis of the frequency response functions. The test structures were contained in a vacuum chamber with air pressures controlled to provide a five-order-of-magnitude range of Knudsen numbers. The damping coefficients from the measurements were compared with predictions from various published models. The results show that the continuum-base Reynolds equation predicts squeeze-film damping accurately if used with correct boundary conditions. The accuracy of molecular-based models depends heavily on the assumptions used in developing the models.
Full-waveform seismic reflection responses of an isolated porous sandstone layer are simulated with three-dimensional (3D) isotropic poroelastic and isotropic elastic finite-difference (FD) numerical algorithms. When the pore-filling fluid is brine water with realistic viscosity, there is about a ∼10% difference in synthetic seismograms observed in an AVO recording geometry. These preliminary results suggest that equivalent elastic medium modeling is adequate for general interpretive purposes, but more refined investigations (such as AVO waveform analysis) should account for poroelastic wave propagation effects.
Fuel stratification has been investigated as a means of improving the low-load combustion efficiency in an HCCI engine. Several stratification techniques were examined: different GDI injectors, increased swirl, and changes in injection pressure, to determine which parameters are effective for improving the combustion efficiency while maintaining NOx emissions below U.S. 2010 limits. Performance and emission measurements were obtained in an all-metal engine. Corresponding fuel distribution measurements were made with fuel PLIF imaging in a matching optically accessible engine. The fuel used was iso-octane, which is a good surrogate for gasoline. For an idle fueling rate (φ = 0.12), combustion efficiency was improved substantially, from 64% to 89% at the NOx limit, using delayed fuel injection with a hollow-cone injector at an injection pressure of 120 bar. Relative to this base case, changing to an 8-hole injector provided the single largest improvement, increasing combustion efficiency to 92%. The effects of swirl varied with injector type, but increased injection pressure was beneficial for both injectors. The highest combustion efficiency of 92.5% at the NOx limit was achieved with the 8-hole injector and an injection pressure of 170 bar, with low swirl. Quantitative fuel-distribution maps derived from the PLIF images showed good agreement with the combustion-efficiency and NO x-emission measurements in the metal engine. The images showed that at the NOx limit, fuel distributions and maximum equivalence ratios (φ) are similar for the two injectors, with delayed injection producing a single large fuel pocket. Fuel-mass histograms suggest that the 8-hole injector improved the combustion-efficiency at the NOx limit by reducing the fraction of low-φ regions, but a wider field of view is required to fully confirm this. The images also show that increased swirl inhibited the mixing of fuel into the center of the combustion chamber, explaining the slower mixing rates observed in the metal engine. A general finding is that the combustion-efficiency/NOx tradeoff improves when fuel can be injected as late as possible with acceptable levels of NOx. Therefore, techniques that provide even faster mixing have the potential for further improvements.
Materials Science and Technology Conference and Exhibition, MS and T'07 - "Exploring Structure, Processing, and Applications Across Multiple Materials Systems"
Materials Science and Technology Conference and Exhibition, MS and T'07 - "Exploring Structure, Processing, and Applications Across Multiple Materials Systems"
Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu
Asay, James R.
The ability to study material response during isentropic compression has been a grand challenge of the scientific community for several decades. However, development of precision techniques for producing isentropic compression at high pressures has been limited. The revolutionary advance for using planar magnetic loading on the Z accelerator accelerated this goal by enabling quasi-isentropic studies on macroscopically sized materials to over 5 Mbar. In addition, the accelerator is easily configured to launch flyer plates to velocities more than four times higher than possible with conventional launchers, thus allowing shock compression studies in the laboratory to pressures exceeding 20 Mbar.
An experimental apparatus is described that measures gas-surface thermal accommodation coefficients from the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation coefficients are determined from the pressure dependence of the heat flux at a fixed plate separation. The apparatus is designed to conduct tests with a variety of gases in contact with interchangeable, well-characterized surfaces of various materials (e.g., metals, ceramics, semiconductors) with various surface finishes (e.g., smooth, rough). Experiments are reported for three gases (argon, nitrogen, and helium) in contact with pairs of 304 stainless steel plates prepared with one of two finishes: lathe-machined or mirror-polished. For argon and nitrogen, the measured accommodation coefficients for machined and polished plates are near unity and independent of finish to within experimental uncertainty. For helium, the accommodation coefficients are much lower and show a slight variation with surface roughness. Two different methods are used to determine the accommodation coefficient from experimental data: the Sherman-Lees formula and the GTR formula. These approaches yield values of 0.87 and 0.94 for argon, 0.80 and 0.86 for nitrogen, 0.36 and 0.38 for helium with the machined finish, and 0.40 and 0.42 for helium with the polished finish, respectively, with an uncertainty of ±0.02. The GTR values for argon and nitrogen are generally in better agreement with the results of other investigators than the Sherman-Lees values are, and both helium results are in reasonable agreement with values in the literature.
The convergence behavior of the Direct Simulation Monte Carlo (DSMC) method is investigated for transient flows. Two types of flows are considered: a Couette-like flow, in which an initial velocity profile decays in time, and a Fourier-like flow, in which an initial temperature profile decays in time. DSMC results are presented for hard-sphere argon with Knudsen numbers in the range 0.01-0.4. Low-Knudsen-number DSMC results are compared with Navier-Stokes results. The DSMC discretization errors from finite time step and finite cell size (in the limit of infinite number of computational molecules per cell) are compared with the predictions of Green-Kubo theory for conditions in this regime.
By using a radio frequency (RF) audio distortion measurement test setup, communication devices can be evaluated for degradation caused by electromagnetic interference (EMI) from active vehicle components. This measurement technique can be used to determine the performance of a radio receiver under a variety of conditions. The test setup consists of making measurements on a baseband audio signal that is sent to the device under test (receiver) via over-the-air RF transmissions. Once a baseline is established, active components on the vehicle can be powered on to determine their contribution to the receiver's degradation. The degradation measured is a result of distortion caused by conducted, radiated, and/or coupled EMI from active components into the receiver's passband.
Many unstructured mesh finite volume discretization schemes are based upon structured mesh schemes. Structured mesh higher-order schemes rely on non-local data support to reconstruct interface values and fluxes. Since this data support is difficult to obtain or may not exist in the context of unstructured mesh codes, due to limited mesh connectivity or element topology, several approaches have been developed to overcome this problem. Three techniques that have been employed in vertex centered schemes are: gradient extrapolation, most collinear edge, and virtual edge extension/element interpolation. The current paper describes these three techniques in detail and compares numerical solutions to the inviscid and viscous flow equations, using these techniques, with an emphasis on grids containing high aspect ratio and high curvature cells.
The electrical, thermal, and mechanical responses of surface micromachined (SMM) 2-beam actuators have been simulated using the Calagio code, a coupled physics analysis tool. The present analysis, unlike previous analyses, includes the surrounding air in the computational domain so that heat losses from the beams onto the silicon substrate will be accurately modeled. This setup is essential because the existing 'shape factor' correlations have difficulty capturing the threedimensional geometric effect of the heat loss in the shuttle at the center that connects the bent beams. In addition, results from the present analysis reveal that because the local heat flux can be extremely high, a significant temperature jump can occur across the air-structure interfaces.
Boundary layer transition continues to be a critical factor in hypersonic fight vehicle design. Measurements of transition during hypersonic flight testing provide valuable data for the development and verification of transition prediction techniques. A summary of transition measurement techniques used on vehicles flown by Sandia National Laboratories is presented, including sample flight data to illustrate the type of transition indication obtained from each measurement technique. SHARP-B2, a ballistic vehicle flown by Sandia for NASA, is used as a case study to illustrate how transition is determined for a flight vehicle and to illustrate some of the difficulties associated with these types of measurements.
IRMMW-THz2007 - Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics
This paper presents heterodyne mixer measurements at 2.9 THz using quantum cascade lasers (QCLs) as sources. The linewidth of the laser was explored by biasing it to run in dual mode operation and observing the linewidth of the beat note. In addition the frequency of the QCL is determined by beating it against a deuterated methanol line from a molecular gas laser.
Prior HCCI optical engine experiments utilizing laser-induced fluorescence (LIF) measurements of stratified fuel-air mixtures have demonstrated the utility of probability density function (PDF) statistics for correlating mixture preparation with combustion. However, PDF statistics neglect all spatial details of in-cylinder fuel distribution. The current computational paper examines the effects of spatial fuel distribution on combustion using a novel combination of a 3-D CFD model with a 1-D linear-eddy model of turbulent mixing. In the simulations, the spatial coarseness of initial fuel distribution prior to the start of heat release is varied while keeping PDF statistics constant. Several cases are run, and as the initial mixture is made coarser, combustion phasing monotonically advances due to high local equivalence ratios that persist longer. The effect of turbulent mixing is more complex. For the case where the length scale of the initial distribution matches the integral length scale of turbulence, turbulent mixing leads to moderation of peak heat-release rate. The randomness of turbulence is captured in the simulation, and for the above case, cycle-to-cycle variation of the combustion is evident. In contrast, when the initial fuel distribution is significantly finer or coarser than the turbulence length scale, turbulent mixing does not affect combustion for two different reasons. For fine distributions, molecular diffusion alone homogenizes the fuel-air mixture prior to ignition, so turbulence adds nothing. For initial distributions that are coarse compared to the turbulence length scale, diffusion and turbulence are both ineffective at mixing, so again turbulence has a minimal effect on combustion.
Cyclic ethers, like tetrahydrofuran (THF), are formed during the autoignition of alkanes and subsequently influence their combustion chemistry. To learn more about the oxidation chemistry of these ether intermediates, a fuel-rich THF flame (π = 1.75) has been studied using the versatile technique of flame-sampling Molecular Beam Mass Spectrometry (MBMS) in combination with single-photon ionization. Several cyclic intermediates which are potentially formed by dehydrogenation of the fuel are identified by their ionization energies. Ethylene, propene, ketene and formaldehyde are major stable decomposition products of THF and their mole fraction profiles are presented. Detected oxygenated species include ethenol, acetaldehyde and propanal. Despite the fuel-rich conditions, the concentrations of benzene and other aromatic hydrocarbons are near the detection limit.
Western States Section/Combustion Institute Fall Meeting 2007
Lignell, D.O.; Hewson, J.C.; Chen, J.H.
Modelling soot formation in turbulent nonpremixed combustion is a difficult problem. Unlike most gaseous combustion species, soot lacks a strong state relationship with the mixture fraction due to unsteady formation rates which overlap transport timescales, and strong differential diffusion between gaseous species and soot. The conditional moment closure model (CMC) has recently been applied to the problem of turbulent soot formation. A challenge in CMC modelling is the treatment of differential diffusion. Three-dimensional direct numerical simulation (DNS) of a nonpremixed ethylene jet flame with soot formation has been performed for the first time, using a nineteen species reduced ethylene mechanism and a four-step, three-moment, semi-empirical soot model. The DNS provides full resolution of the turbulent flow field and is used to perform a-priori analysis of a new CMC model derived from the joint scalar PDF transport equation. Unlike other approaches, this CMC model does not require additional transport equations to treat differentially diffusing species. A budget of the terms of the CMC equation for both gaseous species and soot is presented. In particular, exact expressions for unclosed terms are compared to typical closure models for scalar dissipation, cross dissipation, differential diffusion, and reactive source terms.
Western States Section/Combustion Institute Fall Meeting 2007
Lignell, D.O.; Chen, J.H.; Lu, T.; Law, C.K.
Direct numerical simulation of a nonpremixed, turbulent, ethylene jet flame is performed to investigate fundamental mechanisms of extinction and reignition processes. A reduced ethylene mechanism consisting of nineteen transported and ten quasi-steady state species, with 167 reactions was used, along with mixture averaged transport properties. The flow configuration is a temporally-evolving slot jet at a Reynolds number of 5,120. Extreme extinction of the nonpremixed flame occurs, followed by a period of intense turbulent scalar mixing between reactants and quenched products in which less than 2stratified mixture with nonhomogeneous composition and temperature. Various modes of reignition are analyzed-autoignition, edge flame propagation, and premixed flame propagation-by monitoring Takeno's flame index [H. Yamashitia, M. Shimada, and T. Takeno, Proc. Combust. Inst., 26 (1996) 27-34], homogeneous ignition delay times by sampling the mixture prior to reignition, and the turbulent displacement speed of the reaction front. The dominant reignition mechanism is found to be premixed flame propagation commencing from a few high temperature flame kernels which survive near global extinction.
With the lowering of the EPA maximum contaminant level of arsenic from 50 parts per billion (ppb) to 10 ppb, many public water systems in the country and in New Mexico in particular, are faced with making decisions about how to bring their system into compliance. This document provides detail on the options available to the water systems and the steps they need to take to achieve compliance with this regulation. Additionally, this document provides extensive resources and reference information for additional outreach support, financing options, vendors for treatment systems, and media pilot project results.
This document is a review of five documents on information assurance from the Department of Defense (DoD), namely 5200.40, 8510.1-M, 8500.1, 8500.2, and an ''interim'' document on DIACAP [9]. The five documents divide into three sets: (1) 5200.40 & 8510.1-M, (2) 8500.1 & 8500.2, and (3) the interim DIACAP document. The first two sets describe the certification and accreditation process known as ''DITSCAP''; the last two sets describe the certification and accreditation process known as ''DIACAP'' (the second set applies to both processes). Each set of documents describes (1) a process, (2) a systems classification, and (3) a measurement standard. Appendices in this report (a) list the Phases, Activities, and Tasks of DITSCAP, (b) note the discrepancies between 5200.40 and 8510.1-M concerning DITSCAP Tasks and the System Security Authorization Agreement (SSAA), (c) analyze the DIACAP constraints on role fusion and on reporting, (d) map terms shared across the documents, and (e) review three additional documents on information assurance, namely DCID 6/3, NIST 800-37, and COBIT{reg_sign}.
The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.
This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.
The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.
This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humans were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.
Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.
This efforts objective was to identify and hybridize a suite of technologies enabling the development of predictive decision aids for use principally in combat environments but also in any complex information terrain. The technologies required included formal concept analysis for knowledge representation and information operations, Peircean reasoning to support hypothesis generation, Mill's's canons to begin defining information operators that support the first two technologies and co-evolutionary game theory to provide the environment/domain to assess predictions from the reasoning engines. The intended application domain is the IED problem because of its inherent evolutionary nature. While a fully functioning integrated algorithm was not achieved the hybridization and demonstration of the technologies was accomplished and demonstration of utility provided for a number of ancillary queries.
Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.
This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.
Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.
Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.
In the summer of 2006, the Environmental Programs and Assurance Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), collected surface soil samples at 37 locations within one mile of the vicinity of the newly constructed Thermal Test Complex (TTC) for the purpose of determining baseline conditions against which potential future impacts to the environs from operations at the facility could be assessed. These samples were submitted to an offsite analytical laboratory for metal-in-soil analyses. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference set against which to assess potential future operational impacts at the TTC. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data are presented in graphical format with narrative commentaries on particular items of interest.
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.
The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.