Publications

Results 7851–7900 of 99,299

Search results

Jump to search filters

Prospects and Limitations of Predicting Fuel Ignition Properties from Low-Temperature Speciation Data

Energy and Fuels

Buras, Zachary; Hansen, Nils; Taatjes, Craig A.; Sheps, Leonid

Using chemical kinetic modeling and statistical analysis, we investigate the possibility of correlating key chemical "markers"-typically small molecules-formed during very lean (φ ∼0.001) oxidation experiments with near-stoichiometric (φ ∼1) fuel ignition properties. One goal of this work is to evaluate the feasibility of designing a fuel-screening platform, based on small laboratory reactors that operate at low temperatures and use minimal fuel volume. Buras et al. [Combust. Flame 2020, 216, 472-484] have shown that convolutional neural net (CNN) fitting can be used to correlate first-stage ignition delay times (IDTs) with OH/HO2measurements during very lean oxidation in low-T flow reactors with better than factor-of-2 accuracy. In this work, we test the limits of applying this correlation-based approach to predict the low-temperature heat release (LTHR) and total IDT, including the sensitivity of total IDT to the equivalence ratio, φ. We demonstrate that first-stage IDT can be reliably correlated with very lean oxidation measurements using compressed sensing (CS), which is simpler to implement than CNN fitting. LTHR can also be predicted via CS analysis, although the correlation quality is somewhat lower than for first-stage IDT. In contrast, the accuracy of total IDT prediction at φ = 1 is significantly lower (within a factor of 4 or worse). These results can be rationalized by the fact that the first-stage IDT and LTHR are primarily determined by low-temperature chemistry, whereas total IDT depends on low-, intermediate-, and high-temperature chemistry. Oxidation reactions are most important at low temperatures, and therefore, measurements of universal molecular markers of oxidation do not capture the full chemical complexity required to accurately predict the total IDT even at a single equivalence ratio. As a result, we find that φ-sensitivity of ignition delay cannot be predicted at all using solely correlation with lean low-T chemical speciation measurements.

More Details

Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment (Phase II)

Porritt, Robert W.; Abbott, Robert; Poppeliers, Christian

In this report, we assess the data recorded by a Distributed Acoustic Sensing (DAS) cable deployed during the Source Physics Experiment, Phase II (DAG) in comparison with the data recorded by nearby 4.5-Hz geophones. DAS is a novel recording method with unprecedented spatial resolution, but there are significant concerns around the data fidelity as the technology is ramped up to more common usage. Here we run a series of tests to quantify the similarity between DAS data and more conventional data and investigate cases where the higher spatial resolution of the DAS can provide new insights into the wavefield. These tests include 1D modeling with seismic refraction and bootstrap uncertainties, assessing the amplitude spectra with distance from the source, measuring the frequency dependent inter-station coherency, estimating time-dependent phase velocity with beamforming and semblance, and measuring the cross-correlation between the geophone and the particle velocity inferred from the DAS. In most cases, we find high similarity between the two datasets, but the higher spatial resolution of the DAS provides increased details and methods of estimating uncertainty.

More Details

Minimizing Fraud in the Carbon Offset Market Using Blockchain Technologies

Dwyer, Brian P.; Mowry, Curtis D.

Fraud in the Environmental Benefit Credit (EBC) markets is pervasive. To make matters worse, the cost of creating EBCs is often higher than the market price. Consequently, a method to create, validate, and verify EBCs and their relevance is needed to mitigate fraud. The EBC market has focused on geologic (fossil fuel) CO2 sequestration projects that are often over budget and behind schedule and has failed to capture the "lowest hanging fruit" EBCs - terrestrial sequestration via the agricultural industry. This project reviews a methodology to attain possibly the least costly EBCs by tracking the reduction of inputs required to grow crops. The use of bio- stimulant products, such as humate, allows a farmer to use less nitrogen without adversely affecting crop yield. Using less nitrogen qualifies for EBCs by reducing nitrous oxide emissions and nitrate runoff from a farmer's field. A blockchain that tracks the bio-stimulant material from source to application provides a link between a tangible (bio-stimulant commodity) and the associated intangible (EBCs) assets. Covert insertion of taggants in the bio-stimulant products creates a unique barcode that allows a product to be digitally tracked from beginning to end. This process (blockchain technology) is so robust, logical, and transparent that it will enhance the value of the associated EBCs by mitigating fraud. It provides a real time method for monetizing the benefits of the material. Substantial amounts of energy are required to produce, transport, and distribute agricultural inputs including fertilizer and water. Intelligent optimization of the use of agricultural inputs can drive meaningful cost savings. Tagging and verification of product application provides a valuable understanding of the dynamics in the water/food energy nexus, a major food security and sustainability issue. As technology in agriculture evolves so to must methods to verify the Enterprise Resource Planning (ERP) potential of innovative solutions. The technology reviewed provides the ability to combine blockchain and taggants ("taggant blockchains") as the engine by which to (1) mitigate fraudulent carbon credits; (2) improve food chain security, and (3) monitor and manage sustainability. The verification of product quality and application is a requirement to validate benefits. Recent upgrades to humic and fulvic quality protocols known as ISO CD 19822 TC134 offers an analytical procedure. This work has been assisted by the Humic Products Trade Association and International Humic Substance Society. In addition, providing proof of application of these products and verification of the correct application of prescriptive humic and bio-stimulant products is required. Individual sources of humate have unique and verifiable characteristics. Additionally, methods for prescription of site- specific agricultural inputs in agricultural fields are available. (See US Patents 734867B2, US 90658633B2.) Finally, a method to assure application rate is required through the use of taggants. Sensors using organic solid to liquid phase change nanoparticles of various types and melting temperatures added to the naturally occurring materials provide a barcode. Over 100 types of nanoparticles exist ensuring numerous possible barcodes to reduce industry fraud. Taggant materials can be collected from soil samples of plant material to validate a blockchain of humic, fulvic and other soil amendment products. Other non-organic materials are also available as taggants; however, the organic tags are biodegradable and safe in the environment allowing for use during differing application timeliness.

More Details

Digital Twins for Materials

Frontiers in Materials

Kalidindi, Surya R.; Buzzy, Michael; Boyce, Brad L.; Dingreville, Remi

Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-service performance of a broad range of complex physical machines, devices, and components. A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., appearance) and the functional response of a specified (unique) physical twin. This paper offers a new perspective on how the emerging concept of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is argued that the material itself can be considered as a highly complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy of material length) and function (i.e., response to external stimuli typically characterized through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital twin can represent the evolution of structure, process, and performance of the material over time, with regard to both process history and in-service environment. This paper establishes the foundational concepts and frameworks needed to formulate and continuously update both the form and function of the digital twin of a selected material physical twin. The form of the proposed material digital twin can be captured effectively using the broadly applicable framework of n-point spatial correlations, while its function at the different length scales can be captured using homogenization and localization process-structure-property surrogate models calibrated to collections of available experimental and physics-based simulation data.

More Details

Formation of Al3Sc in Al0.8Sc0.2 thin films

Vacuum

Esteves, Giovanni; Bischoff, Joseph; Schmidt, Ethan; Rodriguez, Mark A.; Kotula, Paul G.; Rosenberg, Samantha G.

We report the formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.

More Details

Data Science and Machine Learning for Genome Security

Verzi, Stephen J.; Krishnakumar, Raga; Levin, Drew; Krofcheck, Daniel J.; Williams, Kelly P.

This report describes research conducted to use data science and machine learning methods to distinguish targeted genome editing versus natural mutation and sequencer machine noise. Genome editing capabilities have been around for more than 20 years, and the efficiencies of these techniques has improved dramatically in the last 5+ years, notably with the rise of CRISPR-Cas technology. Whether or not a specific genome has been the target of an edit is concern for U.S. national security. The research detailed in this report provides first steps to address this concern. A large amount of data is necessary in our research, thus we invested considerable time collecting and processing it. We use an ensemble of decision tree and deep neural network machine learning methods as well as anomaly detection to detect genome edits given either whole exome or genome DNA reads. The edit detection results we obtained with our algorithms tested against samples held out during training of our methods are significantly better than random guessing, achieving high F1 and recall scores as well as with precision overall.

More Details

Cascaded Optical Nonlinearities in Dielectric Metasurfaces

ACS Photonics

Gennaro, Sylvain D.; Doiron, Chloe F.; Karl, Nicholas J.; Padmanabha Iyer, Prasad; Serkland, Darwin K.; Sinclair, Michael B.; Brener, Igal

Since the discovery of the laser, optical nonlinearities have been at the core of efficient light conversion sources. Typically, thick transparent crystals or quasi-phase matched waveguides are utilized in conjunction with phase-matching techniques to select a single parametric process. In recent years, due to the rapid developments in artificially structured materials, optical frequency mixing has been achieved at the nanoscale in subwavelength resonators arrayed as metasurfaces. Phase matching becomes relaxed for these wavelength-scale structures, and all allowed nonlinear processes can, in principle, occur on an equal footing. This could promote harmonic generation via a cascaded (consisting of several frequency mixing steps) process. However, so far, all reported work on dielectric metasurfaces have assumed frequency mixing from a direct (single step) nonlinear process. In this work, we prove the existence of cascaded second-order optical nonlinearities by analyzing the second- and third-wave mixing from a highly nonlinear metasurface in conjunction with polarization selection rules and crystal symmetries. We find that the third-wave mixing signal from a cascaded process can be of comparable strength to that from conventional third-harmonic generation and that surface nonlinearities are the dominant mechanism that contributes to cascaded second-order nonlinearities in our metasurface.

More Details

Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning

Harris, James Z.; Kinkead, Shannon; Fox, Dylan; Ho, Yang

Deep neural networks have emerged as a leading set of algorithms to infer information from a variety of data sources such as images and time series data. In their most basic form, neural networks lack the ability to adapt to new classes of information. Continual learning is a field of study attempting to give previously trained deep learning models the ability to adapt to a changing environment. Previous work developed a CL method called Neurogenesis for Deep Learning (NDL). Here, we combine NDL with a specific neural network architecture (the Ladder Network) to produce a system capable of automatically adapting a classification neural network to new classes of data. The NDL Ladder Network was evaluated against other leading CL methods. While the NDL and Ladder Network system did not match the cutting edge performance achieved by other CL methods, in most cases it performed comparably and is the only system evaluated that can learn new classes of information with no human intervention.

More Details

First-passage time statistics on surfaces of general shape: Surface PDE solvers using Generalized Moving Least Squares (GMLS)

Journal of Computational Physics

Gross, B.J.; Kuberry, Paul; Atzberger, P.J.

We develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics dXt=a(Xt)dt+b(Xt)dWt. We formulate descriptions of Brownian motion and general drift-diffusion processes on surfaces. We consider statistics of the form u(x)=Ex[∫0τg(Xt)dt]+Ex[f(Xτ)] for a domain Ω and the exit stopping time τ=inft⁡{t>0|Xt∉Ω}, where f,g are general smooth functions. For computing these statistics, we develop high-order Generalized Moving Least Squares (GMLS) solvers for associated surface PDE boundary-value problems based on Backward-Kolmogorov equations. We focus particularly on the mean First Passage Times (FPTs) given by the case f=0,g=1 where u(x)=Ex[τ]. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how statistics are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.

More Details

Three-Photon Optical Pumping for Trapped Ion Quantum Computing

Hogle, Craig W.; Ivory, Megan K.; Lobser, Daniel; Ruzic, Brandon P.; Derose, Christopher

In this report we describe the testing of a novel scheme for state preparation of trapped ions in a quantum computing setup. This technique optimally would allow for similar precision and speed of state preparation while allowing for individual addressability of single ions in a chain using technology already available in a trapped ion experiment. As quantum computing experiments become more complicated, mid-experiment measurements will become necessary to achieve algorithms such as quantum error correction. Any mid-experiment measurement then requires the measured qubit to be re-prepared to a known quantum state. Currently this involves the protected qubits to be moved a sizeable distance away from the qubit being re-prepared which can be costly in terms of experiment length as well as introducing errors. Theoretical calculations predict that a three-photon process would allow for state preparation without qubit movement with similar efficiencies to current state preparation methods.

More Details

Characterization and interaction of geometric and contact/impact nonlinearities in dynamical systems

Mechanical Systems and Signal Processing

Saunders, B.E.; Vasconcellos, R.; Kuether, Robert J.; Abdelkefi, A.

In this work, we study how a contact/impact nonlinearity interacts with a geometric cubic nonlinearity in an oscillator system. Specific focus is shown to the effects on bifurcation behavior and secondary resonances (i.e., super- and sub-harmonic resonances). The effects of the individual nonlinearities are first explored for comparison, and then the influences of the combined nonlinearities, varying one parameter at a time, are analyzed and discussed. Nonlinear characterization is then performed on an arbitrary system configuration to study super- and sub-harmonic resonances and grazing contacts or bifurcations. Both the cubic and contact nonlinearities cause a drop in amplitude and shift up in frequency for the primary resonance, and they activate high-amplitude subharmonic resonance regions. The nonlinearities seem to never destructively interfere. The contact nonlinearity generally affects the system's superharmonic resonance behavior more, particularly with regard to the occurrence of grazing contacts and the activation of many bifurcations in the system's response. The subharmonic resonance behavior is more strongly affected by the cubic nonlinearity and is prone to multistable behavior. Perturbation theory proved useful for determining when the cubic nonlinearity would be dominant compared to the contact nonlinearity. The limiting behaviors of the contact stiffness and freeplay gap size indicate the cubic nonlinearity is dominant overall. It is demonstrated that the presence of contact may result in the activation of several bifurcations. In addition, it is proved that the system's subharmonic resonance region is prone to multistable dynamical responses having distinct magnitudes.

More Details

A theoretical investigation of the hydrolysis of uranium hexafluoride: the initiation mechanism and vibrational spectroscopy

Physical Chemistry Chemical Physics

Lutz, Jesse J.; Byrd, Jason N.; Lotrich, Victor F.; Jensen, Daniel S.; Zador, Judit; Hubbard, Joshua A.

Depleted uranium hexafluoride (UF6), a stockpiled byproduct of the nuclear fuel cycle, reacts readily with atmospheric humidity, but the mechanism is poorly understood. We compare several potential initiation steps at a consistent level of theory, generating underlying structures and vibrational modes using hybrid density functional theory (DFT) and computing relative energies of stationary points with double-hybrid (DH) DFT. A benchmark comparison is performed to assess the quality of DH-DFT data using reference energy differences obtained using a complete-basis-limit coupled-cluster (CC) composite method. The associated large-basis CC computations were enabled by a new general-purpose pseudopotential capability implemented as part of this work. Dispersion-corrected parameter-free DH-DFT methods, namely PBE0-DH-D3(BJ) and PBE-QIDH-D3(BJ), provided mean unsigned errors within chemical accuracy (1 kcal mol−1) for a set of barrier heights corresponding to the most energetically favorable initiation steps. The hydrolysis mechanism is found to proceed via intermolecular hydrogen transfer within van der Waals complexes involving UF6, UF5OH, and UOF4, in agreement with previous studies, followed by the formation of a previously unappreciated dihydroxide intermediate, UF4(OH)2. The dihydroxide is predicted to form under both kinetic and thermodynamic control, and, unlike the alternate pathway leading to the UO2F2 monomer, its reaction energy is exothermic, in agreement with observation. Finally, harmonic and anharmonic vibrational simulations are performed to reinterpret literature infrared spectroscopy in light of this newly identified species.

More Details

Optimal quantum transfer from input flying qubit to lossy quantum memory

Journal of Physics A: Mathematical and Theoretical

Chatterjee, Eric; Soh, Daniel B.S.; Eichenfield, Matt

In a quantum network, a key challenge is to minimize the direct reflection of flying qubits as they couple to stationary, resonator-based memory qubits, as the reflected amplitude represents state transfer infidelity that cannot be directly recovered. Optimizing the transfer fidelity can be accomplished by dynamically varying the resonator's coupling rate to the flying qubit field. Here, we analytically derive the optimal coupling rate profile in the presence of intrinsic loss of the quantum memory using an open quantum systems method that can account for intrinsic resonator losses. We show that, since the resonator field must be initially empty, an initial amplitude in the resonator must be generated in order to cancel reflections via destructive interference; moreover, we show that this initial amplitude can be made sufficiently small as to allow the net infidelity throughout the complete transfer process to be close to unity. We then derive the time-varying resonator coupling that maximizes the state transfer fidelity as a function of the initial population and intrinsic loss rate, providing a complete protocol for optimal quantum state transfer between the flying qubit and resonator qubit. We present analytical expressions and numerical examples of the fidelities for the complete protocol using exponential and Gaussian profiles. We show that a state transfer fidelity of around 99.9% can be reached momentarily before the quantum information is lost due to the intrinsic loss in practical resonators used as quantum memories.

More Details

Gas detection sensitivity of hybrid fs/ps and fs/ns CARS

Optics Letters

Steinmetz, Scott A.; Kliewer, Christopher

Coherent anti-Stokes Raman scattering (CARS) is commonly used for thermometry and concentration measurement of major species. The quadratic scaling of CARS signal with number density has limited the use of CARS for detection of minor species, where more sensitive approaches may be more attractive. However, significant advancements in ultrafast CARS approaches have been made over the past two decades, including the development of hybrid CARS demonstrated to yield greatly increased excitation efficiencies. Yet, detailed detection limits of hybrid CARS have not been well established. In this Letter, detection limits for N2, H2, CO, and C2H4 by point-wise hybrid femtosecond (fs)/picosecond (ps) CARS are determined to be of the order of 1015 molecules/cm3. Here, the possible benefit of fs/nanosecond (ns) hybrid CARS is also discussed.

More Details

Morphology and Dynamics in Hydroxide-Conducting Polysulfones

ACS Applied Polymer Materials

Frischknecht, Amalie L.; In 'T Veld, Pieter J.; Kolesnichenko, Igor V.; Arnot, David J.; Lambert, Timothy N.

In alkaline zinc–manganese dioxide batteries, there is a need for selective polymeric separators that have good hydroxide ion conductivity but that prevent the transport of zincate (Zn(OH)4)2-. Here we investigate the nanoscale structure and hydroxide transport in two cationic polysulfones that are promising for these separators. We present the synthesis and characterization for a tetraethylammonium-functionalized polysulfone (TEA-PSU) and compare it to our previous work on an N-butylimidazolium-functionalized polysulfone (NBI-PSU). We perform atomistic molecular dynamics (MD) simulations of both polymers at experimentally relevant water contents. The MD simulations show that both polymers develop well phase separated nanoscale water domains that percolate through the polymer. Calculation of the total scattering intensity from the MD simulations reveal weak or nonexistent ionomer peaks at low wave vectors. The lack of an ionomer peak is due to a loss of contrast in the scattering. The small water domains in both polymers, with median diameters on the order of 0.5–0.7 nm, lead to hydroxide and water diffusion constants that are 1–2 orders of magnitude smaller than their values in bulk water. This confinement lowers the conductivity but also may explain the strong exclusion of zincate from the PSU membranes seen experimentally.

More Details

Seascape Interface Control Document

Moore, Emily R.; Pitts, Todd A.; Foulk, James W.; Qiu, Henry; Ross, Leon C.; Danford, Forest L.; Pitts, Christopher

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1) provide a place for accruing large, curated, labeled data sets useful for developing and evaluating detection and classification algorithms (including, but not limited to, supervised machine learning applications) (2) provide an automated structure for specifying, running and generating reports on algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source software, together with code written in the Python language, to automatically provision and configure computational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets, gather the results and generate reports which are then stored in the Nexus artifact server.

More Details

Perspective—On the Safety of Aged Lithium-Ion Batteries

Journal of the Electrochemical Society

Preger, Yuliya; Torres-Castro, Loraine; Rauhala, Taina; Jeevarajan, Judith

Concerns about the safety of lithium-ion batteries have motivated numerous studies on the response of fresh cells to abusive, off-nominal conditions, but studies on aged cells are relatively rare. This perspective considers all open literature on the thermal, electrical, and mechanical abuse response of aged lithium-ion cells and modules to identify critical changes in their behavior relative to fresh cells. We outline data gaps in aged cell safety, including electrical and mechanical testing, and module-level experiments. Understanding how the abuse response of aged cells differs from fresh cells will enable the design of more effective energy storage failure mitigation systems.

More Details

Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles

Physical Chemistry Chemical Physics

Davis-Wheeler Chin, Clare; Ringgold, Marissa; Redline, Erica; Bregman, Avi G.; Hattar, Khalid; Peretti, Amanda S.; Treadwell, Larico J.

This paper describes a detailed understanding of how nanofillers function as radiation barriers within the polymer matrix, and how their effectiveness is impacted by factors such as composition, size, loading, surface chemistry, and dispersion. We designed a comprehensive investigation of heavy ion irradiation resistance in epoxy matrix composites loaded with surface-modified ceria nanofillers, utilizing tandem computational and experimental methods to elucidate radiolytic damage processes and relate them to chemical and structural changes observed through thermal analysis, vibrational spectroscopy, and electron microscopy. A detailed mechanistic examination supported by FTIR spectroscopy data identified the bisphenol A moiety as a primary target for degradation reactions. Results of computational modeling by the Stopping Range of Ions in Matter (SRIM) Monte Carlo simulation were in good agreement with damage analysis from surface and cross-sectional SEM imaging. All metrics indicated that ceria nanofillers reduce the damage area in polymer nanocomposites, and that nanofiller loading and homogeneity of dispersion are key to effective damage prevention. The results of this study represent a significant pathway for engineered irradiation tolerance in a diverse array of polymer nanocomposite materials. Numerous areas of materials science can benefit from utilizing this facile and effective method to extend the reliability of polymer materials.

More Details

Formal verification and validation of run-to-completion style state charts using Event-B

Innovations in Systems and Software Engineering

Hulette, Geoffrey C.; Foulk, James W.; Armstrong, Robert C.; Snook, Colin; Hoang, T.S.; Butler, Michael

State chart notations with ‘run to completion’ semantics are popular with engineers for designing controllers that react to environment events with a sequence of state transitions but lack formal refinement and rigorous verification methods. State chart models are typically used to design complex control systems that respond to environmental triggers with a sequential process. The model is usually constructed at a concrete level and verified and validated using animation techniques relying on human judgement. Event-B, on the other hand, is based on refinement from an initial abstraction and is designed to make formal verification by automatic theorem provers feasible. Abstraction and formal verification provide greater assurance that critical (e.g. safety or security) properties are not violated by the control system. In this paper, we introduce a notion of refinement into a ‘run to completion’ state chart modelling notation and leverage Event-B’s tool support for theorem proving. We describe the difficulties in translating ‘run to completion’ semantics into Event-B refinements and suggest a solution. We illustrate our approach and show how models can be validated at different refinement levels using our scenario checker animation tools. We show how critical invariant properties can be verified by proof despite the reactive nature of the system and how behavioural aspects of the system can be verified by testing the expected reactions using a temporal logic, model checking approach. To verify liveness, we outline a proof that the run to completion is deadlock-free and converges to complete the run.

More Details

Effective design of vibro-impact energy harvesting absorbers with asymmetric stoppers

European Physical Journal. Special Topics

Alvis, Tyler H.; Abdelkefi, Abdessattar

We report that an investigation is carried out for the purpose of simultaneously controlling a base-excited dynamical system and enhancing the effectiveness of a piezoelectric energy harvesting absorber. Amplitude absorbers are included to improve the energy harvested by the absorber with the possibility of activating broadband resonant regions to increase the operable range of the absorber. This study optimizes the stoppers’ ability for the energy harvesting absorber to generate energy by investigating asymmetric gap and stiffness configurations. Medium stiffnesses of 5 x 104 N/m and 1 x 105 N/m show significant impact on the primary system’s dynamics and improvement in the level of the harvested power for the absorber. A solo stopper configuration when the gap distance is 0.02m improves 29% in peak power and 9% in average power over the symmetrical case. Additionally, an asymmetric stiffness configuration when one of the stiffnesses is 1 x 105 N/m and a gap size of 0.02m indicates an improvement of 25% and 8% for peak and average harvested power, respectively, and the second stopper’s stiffness is 5 x 103 N/m. Hard stopper configurations shows improvements with both asymmetric cases, but not enough improvements to outperform the system without amplitude stoppers.

More Details

Programmable Photoluminescence via Intrinsic and DNA-Fluorophore Association in a Mixed Cluster Heterometallic MOF

ACS Applied Materials and Interfaces

Gallis, Dorina F.S.; Butler, Kimberly S.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.

A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd μ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.

More Details

Atomistic modeling of radiation damage in crystalline materials

Modelling and Simulation in Materials Science and Engineering

Deo; Chen, Elton Y.; Dingreville, Remi

This review discusses atomistic modeling techniques used to simulate radiation damage in crystalline materials. Radiation damage due to energetic particles results in the formation of defects. The subsequent evolution of these defects over multiple length and time scales requiring numerous simulations techniques to model the gamut of behaviors. This work focuses attention on current and new methodologies at the atomistic scale regarding the mechanisms of defect formation at the primary damage state.

More Details

Transforming polymorphs, melting, and boiling during cookoff of PETN

Combustion and Flame

Hobbs, Michael L.; Kaneshige, Michael

Transforming polymorphs, melting, and boiling are physical processes that can accelerate decomposition rates during cookoff of PETN and make measurements difficult. For example, splashing liquids from large bubbles filled with decomposition products clog pressure tubing in sealed experiments. Boil over can also extinguish thermal excursions in vented experiments making ignition difficult. For better measurements, we have modified the Sandia Instrumented Thermal Ignition (SITI) experiment to obtain better sealed and vented cookoff data for PETN by reducing the sample size and including additional gas space to prevent clogged tubing and boil over. Ignition times were not affected by 1) increasing the gas space by a factor of 3 in sealed SITI experiments or by 2) venting the decomposition gasses. That is, thermal ignition of PETN is not pressure dependent and the rate-limiting step during PETN decomposition likely occurs in the condensed phase. A simple decomposition model was calibrated using these observations and includes rate acceleration caused by melting and boiling. The model is used to predict internal temperatures, pressurization, and thermal ignition in a wide variety of experiments. The model is also used with SITI data to estimate the previously unreported latent enthalpy (5 J/g) associated with the α (PETN-I) to β (PETN-II) polymorphic phase transformation of PETN.

More Details

Single-Event Effects Induced by Heavy Ions in SONOS Charge Trapping Memory Arrays

IEEE Transactions on Nuclear Science

Xiao, Tianyao P.; Bennett, Christopher; Agarwal, Sapan; Hughart, David R.; Barnaby, Hugh J.; Puchner, Helmut; Talin, Albert A.; Marinella, Matthew

We investigate the sensitivity of silicon-oxide-nitride-silicon-oxide (SONOS) charge trapping memory technology to heavy-ion induced single-event effects. Threshold voltage ( V_T ) statistics were collected across multiple test chips that contained in total 18 Mb of 40-nm SONOS memory arrays. The arrays were irradiated with Kr and Ar ion beams, and the changes in their V_T distributions were analyzed as a function of linear energy transfer (LET), beam fluence, and operating temperature. We observe that heavy ion irradiation induces a tail of disturbed devices in the 'program' state distribution, which has also been seen in the response of floating-gate (FG) flash cells. However, the V_T distribution of SONOS cells lacks a distinct secondary peak, which is generally attributed to direct ion strikes to the gate-stack of FG cells. This property, combined with the observed change in the V_T distribution with LET, suggests that SONOS cells are not particularly sensitive to direct ion strikes but cells in the proximity of an ion's absorption can still experience a V_T shift. These results shed new light on the physical mechanisms underlying the V_T shift induced by a single heavy ion in scaled charge trap memory.

More Details

The Corrected Distortion model for Lagrangian spray simulation of transcritical fuel injection

International Journal of Multiphase Flow

Nguyen, Tuan M.; Dahms, Rainer N.; Pickett, Lyle M.; Tagliante, Fabien R.

In this work, we present a detailed implementation and validation of the droplet modeling framework proposed by Dahms and Oefelein (2016) into the engine commercial CFD software CONVERGE using the User Defined Function (UDF) interface. The model accounts for the nonlinear deformation and oscillation experienced by liquid spray droplet injected into high pressure and temperature. Lagrangian spray simulations of Engine Combustion Network (ECN) Spray A are performed. Model validation against standard experimental measurements of liquid velocity, vapor mixture fraction is conducted. To perform more rigorous model validation, new experimental measurements based on Diffused Back Illumination (DBI) are introduced. The new measurements are processed for Projected Liquid Volume (PLV), which offers as close as possible one-to-one model validation for liquid penetration while offering new insights into the spray physics. Comparison with a One-D model based on adiabatic mixing theory by Siebers (1999) and Desantes et al. (2007) are also conducted. Through these model validation exercises, it is shown that the new framework improves liquid-phase penetration predictions, following a tendency for enhanced evaporation, compared to the standard approach for both Reynolds Average Navier Stokes (RANS) and Large Eddy Simulation (LES). At the liquid length, maximum mixture fraction values predicted by the new approach are in good agreement those of an adiabatic mixing model. Qualitative analysis of the spray behaviors during the early stage of the injection process reveals that the proposed framework predicts significant increase in droplet evaporation rate with lower drop drag compared to the current standard approach.

More Details

Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors

Fuel

Oh, Heechang; Hwang, Joonsik; Pickett, Lyle M.; Han, Donghee

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand the complex injection behavior and to develop a predictive model to be utilized in the development process. This study presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks (ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation between the detected EOI timings calculated from the modeled signal and the measurement results showed a high coefficient of determination.

More Details

Total Ionizing Dose Effects on Long-Term Data Retention Characteristics of Commercial 3-D NAND Memories

IEEE Transactions on Nuclear Science

Buddhanoy, Matchima; Kumari, Preeti; Surendranathan, Umeshwarnath; Olszewska-Wasiolek, Maryla A.; Hattar, Khalid M.; Ray, Biswajit

This article evaluates the data retention characteristics of irradiated multilevel-cell (MLC) 3-D NAND flash memories. We irradiated the memory chips by a Co-60 gamma-ray source for up to 50 krad(Si) and then wrote a random data pattern on the irradiated chips to find their retention characteristics. The experimental results show that the data retention property of the irradiated chips is significantly degraded when compared to the un-irradiated ones. We evaluated two independent strategies to improve the data retention characteristics of the irradiated chips. The first method involves high-temperature annealing of the irradiated chips, while the second method suggests preprogramming the memory modules before deploying them into radiation-prone environments.

More Details

Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel

Materialia

Heiden, Michael J.; Jensen, Scott C.; Koepke, Joshua R.; Saiz, David J.; Dickens, Sara M.; Jared, Bradley H.

In the pursuit of improving additively manufactured (AM) component quality and reliability, fine-tuning critical process parameters such as laser power and scan speed is a great first step toward limiting defect formation and optimizing the microstructure. However, the synergistic effects between these process parameters, layer thickness, and feedstock attributes (e.g. powder size distribution) on part characteristics such as microstructure, density, hardness, and surface roughness are not as well-studied. In this work, we investigate 316L stainless steel density cubes built via laser powder bed fusion (L-PBF), emphasizing the significant microstructural changes that occur due to altering the volumetric energy density (VED) via laser power, scan speed, and layer thickness changes, coupled with different starting powder size distributions. This study demonstrates that there is not one ideal process set and powder size distribution for each machine. Instead, there are several combinations or feedstock/process parameter ‘recipes’ to achieve similar goals. This study also establishes that for equivalent VEDs, changing powder size can significantly alter part density, GND density, and hardness. Through proper parameter and feedstock control, part attributes such as density, grain size, texture, dislocation density, hardness, and surface roughness can be customized, thereby creating multiple high-performance regions in the AM process space.

More Details

Evaluation of Applied Stress on Atmospheric Corrosion and Pitting Characteristics in 304L Stainless Steel

Corrosion

Plumley, John B.; Alexander, Christopher L.; Wu, Xin; Gordon, Scott; Yu, Zhenzhen; Kemp, Nicholas; Garzon, Fernando H.; Schindelholz, Eric J.; Schaller, Rebecca S.

The effects of applied stress, ranging from tensile to compressive, on the atmospheric pitting corrosion behavior of 304L stainless steel (SS304L) were analyzed through accelerated atmospheric laboratory exposures and microelectrochemical cell analysis. After exposing the lateral surface of a SS304L four-point bend specimen to artificial seawater at 50°C and 35% relative humidity for 50 d, pitting characteristics were determined using optical profilometry and scanning electron microscopy. The SS304L microstructure was analyzed using electron backscatter diffraction. Additionally, localized electrochemical measurements were performed on a similar, unexposed, SS304L four-point bend bar to determine the effects of applied stress on corrosion susceptibility. Under the applied loads and the environment tested, the observed pitting characteristics showed no correlation with the applied stress (from 250 MPa to -250 MPa). Pitting depth, surface area, roundness, and distribution were found to be independent of location on the sample or applied stress. The lack of correlation between pitting statistics and applied stress was more likely due to the aggressive exposure environment, with a sea salt loading of 4 g/m2 chloride. The pitting characteristics observed were instead governed by the available cathode current and salt distribution, which are a function of sea salt loading, as well as pre-existing underlying microstructure. In microelectrochemical cell experiments performed in Cl- environments comparable to the atmospheric exposure and in environments containing orders of magnitude lower Cl- concentrations, effects of the applied stress on corrosion susceptibility were only apparent in open-circuit potential in low Cl- concentration solutions. Cl- concentration governed the current density and transpassive dissolution potential.

More Details

Topological homogenization of metamaterial variability

Materials Today

White, Benjamin C.; Garland, Anthony; Boyce, Brad L.

With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.

More Details

Simulation of Stark-broadened Hydrogen Balmer-line Shapes for da White Dwarf Synthetic Spectra

Astrophysical Journal

Cho, Patricia B.; Gomez, Thomas; Foulk, James W.; Dunlap, Bart H.; Fitz Axen, M.; Hobbs, B.; Hubeny, I.; Winget, D.E.

White dwarfs (WDs) are useful across a wide range of astrophysical contexts. The appropriate interpretation of their spectra relies on the accuracy of WD atmosphere models. One essential ingredient of atmosphere models is the theory used for the broadening of spectral lines. To date, the models have relied on Vidal et al., known as the unified theory of line broadening (VCS). There have since been advancements in the theory; however, the calculations used in model atmosphere codes have only received minor updates. Meanwhile, advances in instrumentation and data have uncovered indications of inaccuracies: spectroscopic temperatures are roughly 10% higher and spectroscopic masses are roughly 0.1 M higher than their photometric counterparts. The evidence suggests that VCS-based treatments of line profiles may be at least partly responsible. Gomez et al. developed a simulation-based line-profile code Xenomorph using an improved theoretical treatment that can be used to inform questions around the discrepancy. However, the code required revisions to sufficiently decrease noise for use in model spectra and to make it computationally tractable and physically realistic. In particular, we investigate three additional physical effects that are not captured in the VCS calculations: ion dynamics, higher-order multipole expansion, and an expanded basis set. We also implement a simulation-based approach to occupation probability. The present study limits the scope to the first three hydrogen Balmer transitions (Hα, Hβ, and Hγ). We find that screening effects and occupation probability have the largest effects on the line shapes and will likely have important consequences in stellar synthetic spectra.

More Details

Hole in one: Pathways to deterministic single-acceptor incorporation in Si(100)-2 × 1

AVS Quantum Science

Campbell, Quinn; Baczewski, Andrew D.; Butera, R.E.; Misra, Shashank

Stochastic incorporation kinetics can be a limiting factor in the scalability of semiconductor fabrication technologies using atomic-precision techniques. While these technologies have recently been extended from donors to acceptors, the extent to which kinetics will impact single-acceptor incorporation has yet to be assessed. To identify the precursor molecule and dosing conditions that are promising for deterministic incorporation, we develop and apply an atomistic model for the single-acceptor incorporation rates of several recently demonstrated molecules: diborane (B2H6), boron trichloride (BCl3), and aluminum trichloride in both monomer (AlCl3) and dimer forms (Al2Cl6). While all three precursors can realize single-acceptor incorporation, we predict that diborane is unlikely to realize deterministic incorporation, boron trichloride can realize deterministic incorporation with modest heating (50 °C), and aluminum trichloride can realize deterministic incorporation at room temperature. We conclude that both boron and aluminum trichloride are promising precursors for atomic-precision single-acceptor applications, with the potential to enable the reliable production of large arrays of single-atom quantum devices.

More Details

A reinvestigation into Munson's model for room closure in bedded rock salt

International Journal of Rock Mechanics and Mining Sciences

Reedlunn, Benjamin; Arguello, J.G.; Hansen, Frank D.

Accurate predictions of room closure are important for hazardous waste repositories in rock salt formations, such as the Waste Isolation Pilot Plant (WIPP). When Munson and co-workers simulated several room closure experiments conducted at the WIPP during the 1980's and 1990's, their simulated closure curves closely agreed with the closure measurements. A careful review of their work, however, raised concerns and prompted the reinvestigation in this paper. To begin the reinvestigation, Munson's legacy Room D closure simulation was reasonably recreated in a current-day finite element code. Next, special care was taken to obtain numerically converged results, re-introduce the anhydrite strata intermittently ignored by Munson, and calibrate the Munson–Dawson (M–D) constitutive model for salt as much as possible from laboratory test measurements. When this new model was used to simulate Room D's closure, it under-predicted the horizontal and vertical closure rates by 2.34× and 3.10×, respectively, at 5.7 years after room excavation. As a result, the M–D model was extended to capture the newly established creep behavior at low equivalent stresses (<8MPa) and replace the Tresca with the Hosford equivalent stress. Simulations using the new M–D model over-predicted the horizontal closure rate by 1.15× and under-predicted the vertical closure rate by 1.08× at 5.7 years, averaged over three room closure experiments. Although further improvements could be made, the new model has a stronger scientific foundation than Munson's legacy model and appears ready for careful engineering use.

More Details

Results from Invoking Artificial Neural Networks to Measure Insider Threat Detection & Mitigation

Digital Threats: Research and Practice

Williams, Adam D.; Foulk, James W.; Shoman, Nathan; Charlton, William S.

Advances on differentiating between malicious intent and natural "organizational evolution"to explain observed anomalies in operational workplace patterns suggest benefit from evaluating collective behaviors observed in the facilities to improve insider threat detection and mitigation (ITDM). Advances in artificial neural networks (ANN) provide more robust pathways for capturing, analyzing, and collating disparate data signals into quantitative descriptions of operational workplace patterns. In response, a joint study by Sandia National Laboratories and the University of Texas at Austin explored the effectiveness of commercial artificial neural network (ANN) software to improve ITDM. This research demonstrates the benefit of learning patterns of organizational behaviors, detecting off-normal (or anomalous) deviations from these patterns, and alerting when certain types, frequencies, or quantities of deviations emerge for improving ITDM. Evaluating nearly 33,000 access control data points and over 1,600 intrusion sensor data points collected over a nearly twelve-month period, this study's results demonstrated the ANN could recognize operational patterns at the Nuclear Engineering Teaching Laboratory (NETL) and detect off-normal behaviors - suggesting that ANNs can be used to support a data-analytic approach to ITDM. Several representative experiments were conducted to further evaluate these conclusions, with the resultant insights supporting collective behavior-based analytical approaches to quantitatively describe insider threat detection and mitigation.

More Details

Analytical Bit-Error Model of NAND Flash Memories for Dosimetry Application

IEEE Transactions on Nuclear Science

Kumari, Preeti; Surendranathan, Umeshwarnath; Olszewska-Wasiolek, Maryla A.; Hattar, Khalid M.; Bhat, Narayana; Ray, Biswajit

In this article, we provide an analytical model for the total ionizing dose (TID) effects on the bit error statistics of commercial flash memory chips. We have validated the model with experimental data collected by irradiating several commercial NAND flash memory chips from different technology nodes. We find that our analytical model can project bit errors at higher TID values [20 krad (Si)] from measured data at lower TID values [<1 krad (Si)]. Based on our model and the measured data, we have formulated basic design rules for using a commercial flash memory chip as a dosimeter. We discuss the impact of NAND chip-to-chip variability, noise margin, and the intrinsic errors on the dosimeter design using detailed experimentation.

More Details

The role of microstructural evolution during spark plasma sintering on the soft magnetic and electronic properties of a CoFe–Al2O3 soft magnetic composite

Journal of Materials Science

Belcher, Calvin H.; Zheng, Baolong; Macdonald, Benjamin E.; Langlois, Eric D.; Lehman, Benjamin; Pearce, Charles J.; Delaney, Robert E.; Apelian, Diran; Lavernia, Enrique J.; Monson, Todd

For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic polarization and high electrical resistivity are needed. This work aimed at the development of a soft magnetic composite synthesized via spark plasma sintering with both high saturation magnetic polarization and high electrical resistivity for efficient soft magnetic cores. CoFe powder particles coated with an insulating layer of Al2O3 were used as feedstock material to improve the electrical resistivity while retaining high saturation magnetic polarization. By maintaining a continuous non-magnetic Al2O3 phase throughout the material, both a high saturation magnetic polarization, above 1.5 T, and high electrical resistivity, above 100 μΩ·m, were achieved. Through microstructural characterization of samples consolidated at various temperatures, the role of microstructural evolution on the magnetic and electronic properties of the composite was elucidated. Upon consolidation at relatively high temperature, the CoFe was to found plastically deform and flow into the Al2O3 phase at the particle boundaries and this phenomenon was attributed to low resistivity in the composite. In contrast, at lower consolidation temperatures, perforation of the Al2O3 phase was not observed and a high electrical resistivity was achieved, while maintaining a high magnetic polarization, ideal for more efficient soft magnetic materials for transformers and inductors.

More Details

Measuring and Modeling Single Event Transients in 12-nm Inverters

IEEE Transactions on Nuclear Science

Agarwal, Sapan; Clark, Lawrence T.; Youngsciortino, Clifford; Ng, Garrick; Black, Dolores; Cannon, Matthew; Black, Jeffrey; Quinn, Heather; Brunhaver, John; Barnaby, Hugh; Manuel, Jack; Blansett, Ethan; Marinella, Matthew J.

In this article, we present a unique method of measuring single-event transient (SET) sensitivity in 12-nm FinFET technology. A test structure is presented that approximately measures the length of SETs using flip-flop shift registers with clock inputs driven by an inverter chain. The test structure was irradiated with ions at linear energy transfers (LETs) of 4.0, 5.6, 10.4, and 17.9 MeV-cm2/mg, and the cross sections of SET pulses measured down to 12.7 ps are presented. The experimental results are interpreted using a modeling methodology that combines TCAD and radiation effect simulations to capture the SET physics, and SPICE simulations to model the SETs in a circuit. The modeling shows that only ion strikes on the fin structure of the transistor would result in enough charge collected to produce SETs, while strikes in the subfin and substrate do not result in enough charge collected to produce measurable transients. Comparisons of the cumulative cross sections obtained from the experiment and from the simulations validate the modeling methodology presented.

More Details

Parameter estimation from spontaneous imbibition into volcanic tuff

Vadose Zone Journal

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.

More Details

A discussion on various experimental methods of impact ionization coefficient measurement in GaN

AIP Advances

Ji, Dong; Zeng, Ke; Bian, Zhengliang; Shankar, Bhawani; Gunning, Brendan P.; Binder, Andrew; Dickerson, Jeramy; Aktas, Ozgur; Anderson, Travis J.; Kaplar, Robert; Chowdhury, Srabanti

Impact ionization coefficients play a critical role in semiconductors. In addition to silicon, silicon carbide and gallium nitride are important semiconductors that are being seen more as mainstream semiconductor technologies. As a reflection of the maturity of these semiconductors, predictive modeling has become essential to device and circuit designers, and impact ionization coefficients play a key role here. Recently, several studies have measured impact ionization coefficients. We dedicated the first part of our study to comparing three experimental methods to estimate impact ionization coefficients in GaN, which are all based on photomultiplication but feature characteristic differences. The first method inserts an InGaN hole-injection layer, the accuracy of which is challenged by the dominance of ionization in InGaN, leading to possible overestimation of the coefficients. The second method utilizes the Franz-Keldysh effect for hole injection but not for electrons, where the mixed injection of induced carriers would require a margin of error. The third method uses complementary p-n and n-p structures that have been at the basis of this estimation in Si and SiC and leans on the assumption of a constant electric field, and any deviation would require a margin of error. In the second part of our study, we evaluated the models using recent experimental data from diodes demonstrating avalanche breakdown.

More Details

Monitoring the SNS basement neutron background with the MARS detector

Journal of Instrumentation

Cabrera-Palmer, B.; Collaboration, Coherent

We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be 1.20 ± 0.56 neutrons/m2/MWh for neutron energies above ∼3.5 MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.

More Details

Grain-boundary fracture mechanisms in Li7La3Zr2O12 (LLZO) solid electrolytes: When phase transformation acts as a temperature-dependent toughening mechanism

Journal of the Mechanics and Physics of Solids

Monismith, Scott; Qu; Dingreville, Remi

Garnet-type, solid electrolytes, such as Li7La3Zr2O12 (LLZO), are a promising alternative to liquid electrolytes for lithium-metal batteries. However, such solid-electrolyte materials frequently exhibit undesirable lithium (Li) metal plating and fracture along grain boundaries. In this study, we employ atomistic simulations to investigate the mechanisms and key fracture properties associated with intergranular fracture along one such boundary. Our results show that, in the case of a Σ5(310) grain boundary, this boundary exhibits brittle fracture behavior, i.e. the absence of dislocation activity ahead of the propagating crack tip, accompanied with a decrease in work of separation, peak stress, and maximum stress intensity factor as the temperature increases from 300 K to 1500 K. As the crack propagates, we predict two temperature-dependent Li clustering regimes. For temperatures at or below 900 K, Li tends to cluster in the bulk region away from the crack plane driven by a void-coalescence mechanism concomitant a simultaneous cubic-to-tetragonal phase transition. The tetragonalization of LLZO in this temperature regime acts as an emerging toughening mechanism. At higher temperatures, this phase transition mechanism is suppressed leading to a more uniform distribution of Li throughout the grain-boundary system and lower fracture properties as compared to lower temperatures.

More Details

On the initiation and evolution of dielectric breakdown in auto-magnetizing liner experiments

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.; Hutsel, Brian T.; Yager-Elorriaga, David A.

Auto-magnetizing (AutoMag) liners are cylindrical tubes composed of discrete metallic helices encapsulated in insulating material; when driven with a ∼2 MA, ∼100-ns prepulse on the 20 MA, 100-ns rise time Z accelerator, AutoMag targets produced >150 T internal axial magnetic fields [Shipley et al., Phys. Plasmas 26, 052705 (2019)]. Once the current rise rate of the pulsed power driver reaches sufficient magnitude, the induced electric fields in the liner cause dielectric breakdown of the insulator material and, with sufficient current, the cylindrical target radially implodes. The dielectric breakdown process of the insulating material in AutoMag liners has been studied in experiments on the 500-900 kA, ∼100-ns rise time Mykonos accelerator. Multi-frame gated imaging enabled the first time-resolved observations of photoemission from dynamically evolving plasma distributions during the breakdown process in AutoMag targets. Using magnetohydrodynamic simulations, we calculate the induced electric field distribution and provide a detailed comparison to the experimental data. We find that breakdown in AutoMag targets does not primarily depend on the induced electric field in the gaps between conductive helices as previously thought. Finally, to better control the dielectric breakdown time, a 12-32 mJ, 170 ps ultraviolet (λ = 266 nm) laser was implemented to irradiate the outer surface of AutoMag targets to promote breakdown in a controlled manner at a lower internal axial field. The laser had an observable effect on the time of breakdown and subsequent plasma evolution, indicating that pulsed UV lasers can be used to control breakdown timing in AutoMag.

More Details

A hybrid meshfree discretization to improve the numerical performance of peridynamic models

Computer Methods in Applied Mechanics and Engineering

Shojaei, Arman; Hermann, Alexander; Cyron, Christian J.; Seleson, Pablo; Silling, Stewart

Efficient and accurate calculation of spatial integrals is of major interest in the numerical implementation of peridynamics (PD). The standard way to perform this calculation is a particle-based approach that discretizes the strong form of the PD governing equation. This approach has rapidly been adopted by the PD community since it offers some advantages. It is computationally cheaper than other available schemes, can conveniently handle material separation, and effectively deals with nonlinear PD models. Nevertheless, PD models are still computationally very expensive compared with those based on the classical continuum mechanics theory, particularly for large-scale problems in three dimensions. This results from the nonlocal nature of the PD theory which leads to interactions of each node of a discretized body with multiple surrounding nodes. Here, we propose a new approach to significantly boost the numerical efficiency of PD models. We propose a discretization scheme that employs a simple collocation procedure and is truly meshfree; i.e., it does not depend on any background integration cells. In contrast to the standard scheme, the proposed scheme requires a much smaller set of neighboring nodes (keeping the same physical length scale) to achieve a specific accuracy and is thus computationally more efficient. Our new scheme is applicable to the case of linear PD models and within neighborhoods where the solution can be approximated by smooth basis functions. Therefore, to fully exploit the advantages of both the standard and the proposed schemes, a hybrid discretization is presented that combines both approaches within an adaptive framework. The high performance of the developed framework is illustrated by several numerical examples, including brittle fracture and corrosion problems in two and three dimensions.

More Details

Pyomo.GDP: an ecosystem for logic based modeling and optimization development

Optimization and Engineering

Chen, Qi; Johnson, Emma S.; Bernal, David E.; Valentin, Romeo; Kale, Sunjeev; Bates, Johnny; Siirola, John D.; Grossmann, Ignacio E.

We present three core principles for engineering-oriented integrated modeling and optimization tool sets—intuitive modeling contexts, systematic computer-aided reformulations, and flexible solution strategies—and describe how new developments in Pyomo.GDP for Generalized Disjunctive Programming (GDP) advance this vision. We describe a new logical expression system implementation for Pyomo.GDP allowing for a more intuitive description of logical propositions. The logical expression system supports automated reformulation of these logical constraints to linear constraints. We also describe two new logic-based global optimization solver implementations built on Pyomo.GDP that exploit logical structure to avoid “zero-flow” numerical difficulties that arise in nonlinear network design problems when nodes or streams disappear. These new solvers also demonstrate the capability to link to external libraries for expanded functionality within an integrated implementation. We present these new solvers in the context of a flexible array of solution paths available to GDP models. Finally, we present results on a new library of GDP models demonstrating the value of multiple solution approaches.

More Details

Total Ionizing Dose Effects on Read Noise of MLC 3-D NAND Memories

IEEE Transactions on Nuclear Science

Surendranathan, Umeshwarnath; Olszewska-Wasiolek, Maryla A.; Hattar, Khalid M.; Fleetwood, Daniel M.; Ray, Biswajit

This article analyzes the total ionizing dose (TID) effects on noise characteristics of commercial multi-level-cell (MLC) 3-D NAND memory technology during the read operation. The chips were exposed to a Co-60 gamma-ray source for up to 100 krad(Si) of TID. We find that the number of noisy cells in the irradiated chip increases with TID. Bit-flip noise was more dominant for cells in an erased state during irradiation compared to programmed cells.

More Details

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Bussmann, Ezra; Smith, Sean W.; Scrymgeour, David; Brumbach, Michael T.; Lu, Ping; Dickens, Sara M.; Michael, Joseph R.; Ohta, Taisuke; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul; Hopkins, Matthew M.; Moore, Christopher

Structural disorder causes materials' surface electronic properties, e.g., work function (φ), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying φ = 5.70 ± 0.03 eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the φ distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler-Nordheim relation. We show that the φ spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local φ variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify φ. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole μ = 0.12 D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic φ and the nanostructure that may contribute to the spread of reported φ for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details
Results 7851–7900 of 99,299
Results 7851–7900 of 99,299