Publications

Results 80401–80600 of 96,771

Search results

Jump to search filters

Sandia National Laboratories California Pollution Prevention Program Annual Report

Farren, Laurie J.

The annual program report provides detailed information about all aspects of the SNL/CA Pollution Prevention Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Pollution Prevention Program, one of six programs that supports environmental management at SNL/CA.

More Details

Macro- to nanoscale wear prevention via molecular adsorption

Proposed for publication in Science.

Dugger, Michael T.; Ohlhausen, J.A.

As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.

More Details

Estimating Z-Pinch computing resources

Brunner, Thomas A.

The Z facility at Sandia National Laboratories produces high energy density environments. Computer simulations of the experiments provide key insights and help make the most efficient use of the facility. This document estimates the computer resources needed in order to support the experimental program. The resource estimate is what we would like to have in about five years and assumes that we will have a robust, scalable simulation capability as well as enough physicists to run the simulations.

More Details

Model for resonant plasma probe

Johnson, William Arthur.; Coats, Rebecca S.; Jorgenson, Roy E.; Hebner, Gregory A.

This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

More Details

Asynchronous parallel generating set search for linearly-constrained optimization

Kolda, Tamara G.; Griffin, Joshua G.

We describe an asynchronous parallel derivative-free algorithm for linearly-constrained optimization. Generating set search (GSS) is the basis of ourmethod. At each iteration, a GSS algorithm computes a set of search directionsand corresponding trial points and then evaluates the objective function valueat each trial point. Asynchronous versions of the algorithm have been developedin the unconstrained and bound-constrained cases which allow the iterations tocontinue (and new trial points to be generated and evaluated) as soon as anyother trial point completes. This enables better utilization of parallel resourcesand a reduction in overall runtime, especially for problems where the objec-tive function takes minutes or hours to compute. For linearly-constrained GSS,the convergence theory requires that the set of search directions conform to the3 nearby boundary. The complexity of developing the asynchronous algorithm forthe linearly-constrained case has to do with maintaining a suitable set of searchdirections as the search progresses and is the focus of this research. We describeour implementation in detail, including how to avoid function evaluations bycaching function values and using approximate look-ups. We test our imple-mentation on every CUTEr test problem with general linear constraints and upto 1000 variables. Without tuning to individual problems, our implementationwas able to solve 95% of the test problems with 10 or fewer variables, 75%of the problems with 11-100 variables, and nearly half of the problems with100-1000 variables. To the best of our knowledge, these are the best resultsthat have ever been achieved with a derivative-free method. Our asynchronousparallel implementation is freely available as part of the APPSPACK software.4

More Details

Monolayer Engineered Microchannels for Motor Protein Transport

Sandia journal manuscript; Not yet accepted for publication

Bunker, B.C.; Bachand, George B.; Manginell, Ronald P.

Here, self-assembled monolayers (SAMS) have been investigated for their ability to confine the absorption of the motor protein kinesin and direct the movement of microtubule shuttles (MTs) within channels of a lithographically patterned microfluidic device. Channels were made from gold films deposited on a silicon wafer to provide chemically distinct surfaces for the selective formation of a range of alkane thiol monolayers on channel walls. Devices were then exposed to solutions containing casein and kinesin to develop protein monolayers capable of propelling microtubules in the presence of adenosine triphosphate (ATP) fuel. Fluorescence microscopy images were used to observe the attachment of MTs to chemically distinct regions and to evaluate the ability of the various monolayer coatings to confine the movement of MTs within the channel system. Ellipsometry was used to characterize the protein adsorption characteristics of SAMS terminated with different functional groups to help establish confinement mechanisms. Finally, both anti-fouling and cationic monolayers were found to be effective in confining MT movement within the channels by controlling the adsorption or orientation of the casein buffer layers that mediate motor protein attachment and functionality.

More Details

Verification and validation as applied epistemology

McNamara, Laura A.; Trucano, Timothy G.; Backus, George A.

Since 1998, the Department of Energy/NNSA National Laboratories have invested millions in strategies for assessing the credibility of computational science and engineering (CSE) models used in high consequence decision making. The answer? There is no answer. There's a process--and a lot of politics. The importance of model evaluation (verification, validation, uncertainty quantification, and assessment) increases in direct proportion to the significance of the model as input to a decision. Other fields, including computational social science, can learn from the experience of the national laboratories. Some implications for evaluating 'low cognition agents'. Epistemology considers the question, How do we know what we [think we] know? What makes Western science special in producing reliable, predictive knowledge about the world? V&V takes epistemology out of the realm of thought and puts it into practice. What is the role of modeling and simulation in the production of reliable, credible scientific knowledge about the world? What steps, investments, practices do I pursue to convince myself that the model I have developed is producing credible knowledge?

More Details

SNL/CA Environmental Management System Program Manual

Larsen, Barbara L.

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

More Details

Aria 1.5 : user manual

Notz, Patrick N.; Subia, Samuel R.; Hopkins, Matthew M.; Moffat, Harry K.; Noble, David R.

Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes the incompressible Navier-Stokes equations, energy transport equation, species transport equations, nonlinear elastic solid mechanics, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods, fully-coupled Picard's method, and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based on the Sierra Framework.

More Details

A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations

Howle, Victoria E.; Shadid, John N.; Shuttleworth, Robert R.; Tuminaro, Raymond S.

In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [25]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code.

More Details

Estimating the critical time-step in explicit dynamics using the Lanczos method

International Journal for Numerical Methods in Engineering

Koteras, James R.; Lehoucq, R.B.

The goal of our paper is to demonstrate the cost-effective use of the Lanczos method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos method can provide a significantly larger estimate for the critical time-step than an element-based method (the typical scheme). However, the Lanczos method represents a more expensive method for calculating a critical time-step than element-based methods. Our paper shows how the additional cost of the Lanczos method can be amortized over a number of time steps and lead to an overall decrease in run-time for an explicit, transient dynamics code. We present an adaptive hybrid scheme that synthesizes the Lanczos-based and element-based estimates and allows us to run near the critical time-step estimate provided by the Lanczos method. Copyright © 2006 John Wiley & Sons, Ltd.

More Details

Architecture of petawatt-class z-pinch accelerators

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Cuneo, M.E.; Headley, D.I.; Ives, H.C.; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, C.L.; Porter, J.L.; Wagoner, T.C.; Woodworth, J.R.

We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow (∼1μs) Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses (1μs) required to drive z pinches. The other is powered by linear transformer drivers (LTDs), which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time) more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i) 300 Marx generators that comprise a total of 1.8×104 capacitors, store 98 MJ, and erect to 5 MV; (ii) 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii) 600 5-MV laser-triggered gas switches; (iv) three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v) a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi) six magnetically insulated vacuum transmission lines (MITLs); and (vii) a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210 LTD modules that include a total of 1×106 capacitors and 5×105 200-kV electrically triggered gas switches. The LTD accelerator stores 182 MJ and produces a peak electrical power of 1000 TW. The accelerator delivers an effective peak current of 68 MA to a pinch that implodes in 95 ns, and 75 MA to a pinch that implodes in 120 ns. Conceptually straightforward upgrades to these designs would deliver even higher pinch currents and faster implosions. © 2007 The American Physical Society.

More Details

A system model for assessing scalar dissipation measurement accuracy in turbulent flows

Measurement Science and Technology

Barlow, R.S.; Wang, G.H.

In this paper, a system model is developed to investigate independent and coupled effects of resolution, noise and data processing algorithms on the accuracy of the scalar gradient and dissipation measurements in turbulent flows. Finite resolution effects are simulated by spectral filtering, noise is modelled as an additive source in the model spectrum and differencing stencils are analysed as digital filters. In the current study, the effective resolution is proposed to be a proper criterion for quantifying the resolution requirement for scalar gradient and dissipation measurement. Both effective resolution and noise-induced apparent dissipation are mainly determined by the system transfer function. The finite resolution results, based upon a model scalar energy spectrum, are shown to agree with non-reacting experimental data. The coupled resolution-noise results show three regions in the mean scalar dissipation rate measurement: noise-dominated region, noise-resolution correlated region and resolution-dominated region. Different noise levels lead to different resolution error curves for the measured mean scalar dissipation rate. Experimental procedures and guidelines to improve the scalar gradient and dissipation experiments are proposed, based on these model study results. Finally, the proposed system approach can also be applied to other derived quantities involving complex transfer functions.

More Details

On various modeling approaches to radiative heat transfer in pool fires

Combustion and Flame

Jensen, Kirk A.; Ripoll, Jean F.; Wray, Alan A.; Joseph, David; El Hafi, Mouna

Six computational methods for solution of the radiative transfer equation in an absorbing-emitting, nonscattering gray medium were compared for a 2-m JP-8 pool fire. The emission temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for computing radiation for large and fully turbulent fires. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray-tracing scheme with high angular resolution. Solutions using the discrete transfer method (DTM), the discrete ordinates method (DOM) with both S4 and LC11 quadratures, and a moment model using the M1 closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. Inside the fire, where radiation is isotropic, all methods gave comparable results with good accuracy. Predictions of DTM agreed well with the reference solutions, which is expected for a technique based on ray tracing. DOM LC11 was shown to be more accurate than the commonly used S4 quadrature scheme, especially in anisotropic regions of the fire domain. On the other hand, DOM S4 gives an accurate source term and, in isotropic regions, correct fluxes. The M1 results agreed well with other solution techniques and were comparable to DOM S4. This represents the first study where the M1 method was applied to a combustion problem occurring in a complex three-dimensional geometry. Future applications of M1 to fires and similar problems are recommended, considering its similar accuracy and the fact that it has significantly lower computational cost than DOM S4. © 2006 The Combustion Institute.

More Details

Relaxing passivity for human-robot interaction

Buerger, Stephen B.

Robots for high-force interaction with humans face particular challenges to achieve performance and coupled stability. Because available actuators are unable to provide sufficiently high force density and low impedance, controllers for such machines often attempt to mask the robots physical dynamics, though this threatens stability. Controlling for passivity, the state-of-the-art means of ensuring coupled stability, inherently limits performance to levels that are often unacceptable. A controller that imposes passivity is compared to a controller designed by a new method that uses limited knowledge of human dynamics to improve performance. Both controllers were implemented on a testbed, and coupled stability and performance were tested. Results show that the new controller can improve both stability and performance. The different structures of the controllers yield key differences in physical behavior, and guidelines are provided to assist in choosing the appropriate approach for specific applications.

More Details

A generic model of contagious disease and its application to human-to-human transmission of avian influenza

Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

More Details

Development of the doppler electron velocimeter: theory

Reu, Phillip L.

Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

More Details

Nano-scale optical and electrical probes of materials and processes

Bogart, Katherine B.

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

More Details

Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report

Maenchen, John E.; Savage, Mark E.; Struve, Kenneth W.; Woodworth, Joseph R.; Lehr, J.M.; Warne, Larry K.; Bliss, David E.; Jorgenson, Roy E.; LeChien, Keith R.; McKee, George R.; Pasik, Michael F.; Rosenthal, Stephen E.

In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

More Details

Widefield laser doppler velocimeter: development and theory

Massad, Jordan M.

The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

More Details

Advanced diagnostics for impact-flash spectroscopy on light-gas guns

Chhabildas, Lalit C.; Brown, Justin L.

This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

More Details

Guide to preparing SAND reports and other communication products : version 3

Brittenham, Phillip W.

This guide describes the R&A process, Common Look and Feel requirements, and preparation and publishing procedures for communication products at Sandia National Laboratories. Samples of forms and examples of published communications products are provided. This guide takes advantage of the wealth of material now available on the Web as a resource. Therefore, it is best viewed as an electronic document. If some of the illustrations are too small to view comfortably, you can enlarge them on the screen as needed. The most significant changes since Version 1 involve the introduction of the electronic Review and Approval application at the Sandia/California (CA) and Sandia/New Mexico (NM) sites. Authors are advised to check the most current material on the application Web site before initiating the R&A process. The format of this document is considerably different than that expected of a SAND Report. It was selected to permit the large number of illustrations and examples to be placed closer to the text that references them. In the case of forms, covers, and other items that are included as examples, a link to the Web is provided so that you can access the items and download them for use.

More Details

Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

Nash, Thomas J.; Sanford, Thomas W.

We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.

More Details

Surface effects in semiconductor interstitial formation energies

Sandia journal manuscript; Not yet accepted for publication

Wills, Ann E.; Wixom, Ryan R.

In this work, we examine the formation energies of interstitials in semiconductors obtained with four different pure functionals. Explicitely we investigate three silicon self-interstitials. All functionals give the same trend among those interstitials; the lowest energy being for formation of the <110>-split, somewhat higher energy for the formation of the hexagonal interstitial, while highest energy among the three is obtained for the meta-stable tetragonal configuration. However, the value for the formation energy for a specific interstitial differs substantially in calculations using different functionals. It is shown that the main contribution to these differences is stemming from the functionals different surface intrinsic errors. We also discuss the puzzle that the values obtained with the surface intrisic error free AM05 functional (Armiento and Mattsson, Phys. Rev. B 72, 085108 (2006)) gives values substantially lower than Quantum Monte Carlo results

More Details

Convergence properties of polynomial chaos approximations for L2 random variables

Field, Richard V.

Polynomial chaos (PC) representations for non-Gaussian random variables are infinite series of Hermite polynomials of standard Gaussian random variables with deterministic coefficients. For calculations, the PC representations are truncated, creating what are herein referred to as PC approximations. We study some convergence properties of PC approximations for L{sub 2} random variables. The well-known property of mean-square convergence is reviewed. Mathematical proof is then provided to show that higher-order moments (i.e., greater than two) of PC approximations may or may not converge as the number of terms retained in the series, denoted by n, grows large. In particular, it is shown that the third absolute moment of the PC approximation for a lognormal random variable does converge, while moments of order four and higher of PC approximations for uniform random variables do not converge. It has been previously demonstrated through numerical study that this lack of convergence in the higher-order moments can have a profound effect on the rate of convergence of the tails of the distribution of the PC approximation. As a result, reliability estimates based on PC approximations can exhibit large errors, even when n is large. The purpose of this report is not to criticize the use of polynomial chaos for probabilistic analysis but, rather, to motivate the need for further study of the efficacy of the method.

More Details
Results 80401–80600 of 96,771
Results 80401–80600 of 96,771