We present a materials study of AlGaInP grown on GaAs leveraging deep-level optical spectroscopy and time resolved photoluminescence. Our materials may serve as the basis for wide-bandgap analogs of silicon photomultipliers optimized for short wavelength sensing.
We demonstrate a monolithic all-epitaxial resonant-cavity architecture for long-wave infrared photodetectors with substrate-side illumination. An nBn detector with an ultra-thin (t ≈ 350 nm) absorber layer is integrated into a leaky resonant cavity, formed using semi-transparent highly doped (n + +) epitaxial layers, and aligned to the anti-node of the cavity's standing wave. The devices are characterized electrically and optically and demonstrate an external quantum efficiency of ∼25% at T = 180 K in an architecture compatible with focal plane array configurations.
Nordin, L.; Petluru, P.; Muhowski, A.J.; Shaner, Eric A.; Wasserman, D.
We demonstrate all-epitaxial structures capable of supporting short- and long-range surface plasmon polariton (SRSPP and LRSPP) modes in the long-wave infrared region of the electromagnetic spectrum. The SRSPP and LRSPP modes are bound to the interfaces of a buried heavily doped (n + +) semiconductor layer and surrounding quantum-engineered type-II superlattice (T2SL) materials. The surrounding T2SLs are designed to allow optical transitions across the frequency dispersion of the SPP modes. We map the SPP dispersion in our structure using grating-coupled angle- and polarization-dependent reflection and photoluminescence spectroscopy. The epitaxial structures are analytically described using a simplified three-layer system (T 2 SL / n + + / T 2 SL) and modeled using rigorous coupled wave analysis with excellent agreement to our experimental results. The presented structures offer the potential to serve as long-range interconnects or waveguides in all-epitaxial plasmonic/optoelectronic systems operating in the long-wave infrared.
Nordin, Leland; Kamboj, Abhilasha; Petluru, Priyanka; Shaner, Eric A.; Wasserman, Daniel
Infrared detectors using monolithically integrated doped semiconductor "designer metals"are proposed and experimentally demonstrated. We leverage the "designer metal"groundplanes to form resonant cavities with enhanced absorption tuned across the long-wave infrared (LWIR). Detectors are designed with two target absorption enhancement wavelengths: 8 and 10 μm. The core of our detectors are quantum-engineered LWIR type-II superlattice p-i-n detectors with total thicknesses of only 1.42 and 1.80 μm for the 8 and 10 μm absorption enhancement devices, respectively. Our 8 and 10 μm structures show peak external quantum efficiencies of 45 and 27%, which are 4.5× and 2.7× enhanced, respectively, compared to control structures. We demonstrate the clear advantages of this detector architecture, both in terms of ease of growth/fabrication and enhanced device performance. The proposed architecture is absorber- A nd device-structure agnostic, much thinner than state-of-the-art LWIR T2SLs, and offers the opportunity for the integration of low dark current LWIR detector architectures for significant enhancement of IR detectivity.
Here, the design, fabrication, and characterization of an actively tunable long-wave infrared detector, made possible through direct integration of a graphene-enabled metasurface with a conventional type-II superlattice infrared detector, are reported. This structure allows for post-fabrication tuning of the detector spectral response through voltage-induced modification of the carrier density within graphene and, therefore, its plasmonic response. These changes modify the transmittance through the metasurface, which is fabricated monolithically atop the detector, allowing for spectral control of light reaching the detector. Importantly, this structure provides a fabrication-controlled alignment of the metasurface filter to the detector pixel and is entirely solid-state. Using single pixel devices, relative changes in the spectral response exceeding 8% have been realized. These proof-of-concept devices present a path toward solid-state hyperspectral imaging with independent pixel-to-pixel spectral control through a voltage-actuated dynamic response.
Characterization of vertical transport in semiconductor heterostructures is extremely difficult and often impractical. Measurements that are relatively straight forward in lateral transport using Hall methods, such as quantifying carrier density or mobility, have no analog in conventional vertical devices. Doppler charge velocimetry may provide an alternative approach to obtaining transport information. We hypothesize that we can drive vertical currents in structures like heterojunction bipolar transistors or nBn detectors, illuminate them with microwaves, and directly measure the carrier velocities through Doppler shifts imparted on the reflected microwave signal. Some challenges involve providing optical injection and working in the vertical geometry required to extract the desired information. While progress was made to this end, experiments have not yet proved successful. Implications for infrared material characterization are summarized at the end of this document.
We report transport measurements of electrons on helium in a microchannel device where the channels are 200 nm deep and 3μm wide. The channels are fabricated above amorphous metallic Ta 40 W 40 Si 20 , which has surface roughness below 1 nm and minimal variations in work function across the surface due to the absence of polycrystalline grains. We are able to set the electron density in the channels using a ground plane. We estimate a mobility of 300cm2/Vs and electron densities as high as 2.56×109cm-2. We demonstrate control of the transport using a barrier which enables pinch-off at a central microchannel connecting two reservoirs. The conductance through the central microchannel is measured to be 10 nS for an electron density of 1.58×109cm-2. Our work extends transport measurements of surface electrons to thin helium films in microchannel devices above metallic substrates.
The oxidation mechanisms of exfoliated Gallium Selenide (GaSe) are strongly influenced by humidity. We have observed that the presence of water molecules leads to formation of Ga2O3, SeO2, and Se via sequence of intermediate reactions which include generation of aqueous solution of selenic acid. Raman spectra of GaSe flakes undergoing oxidation in a humidity-controlled environment reveal formation of selenic acid-related species causing Raman scattering signal in the regions around 830 cm-1 and around 1230 cm-1. This observation sheds light on the path of chemical reactions, going via an intermediate stage of formation of gallium hydroxide and selenium oxide-water complexes with further decompositions of these compounds to Ga2O3, SeO2, and amorphous selenium.
Thermophotovoltaics (TPV) is the process by which photons radiated from a thermal emitter are converted into electrical power via a photovoltaic cell. Selective thermal emitters that can survive at temperatures at or above ∼1000°C have the potential to greatly improve the efficiency of TPV energy conversion by restricting the emission of photons with energies below the photovoltaic (PV) cell bandgap energy. In this work, we demonstrated TPV energy conversion using a high-temperature selective emitter, dielectric filter, and 0.6 eV In0.68 Ga0.32 As photovoltaic cell. We fabricated a passivated platinum and alumina frequency-selective surface by conventional stepper lithography. To our knowledge, this is the first demonstration of TPV energy conversion using a metamaterial emitter. The emitter was heated to >1000°C, and converted electrical power was measured. After accounting for geometry, we demonstrated a thermal-to-electrical power conversion efficiency of 24.1 0.9% at 1055°C. We separately modeled our system consisting of a selective emitter, dielectric filter, and PV cell and found agreement with our measured efficiency and power to within 1%. Our results indicate that high-efficiency TPV generators are possible and are candidates for remote power generation, combined heat and power, and heat-scavenging applications.
Shaner, Eric A.; Kalugin, Nikolai G.; Jing, Lei; Morell, Eric S.; Dyer, Gregory C.; Wickey, Lee; Ovezmyradov, Mekan; Wanke, Michael C.; Lau, Chun N.; Foa Torres, Luis E.F.; Fistul, Mikhail V.; Efetov, Konstantin B.
Graphene has established itself as a promising optoelectronic material. Many details of the photoresponse (PR) mechanisms in graphene in the THz-to-visible range have been revealed, however, new intricacies continue to emerge. Interface junctions, formed at the boundaries between parts of graphene with different number of layers or different stacking orders, and making connection between electrical contacts, provide another peculiar setup to establish PR. Here, we experimentally demonstrate an enhanced polarization sensitive photoelectric PR in graphene sheets containing interface junctions as compared to homogenous graphene sheets in the visible, infrared, and THz spectral regions. Our numerical simulations show that highly localized electronic states are created at the interface junctions, and these states exhibit a unique energy spectrum and enhanced probabilities for optical transitions. The interaction of electrons from interface junction states with electromagnetic fields generates a polarization-sensitive PR that is maximal for the polarization direction perpendicular to the junction interface.
Shaner, Eric A.; Wanke, Michael C.; Grine, Albert; Kalugin, Nikolai G.; Jing, Lei; Morell, Eric S.; Dyer, Gregory C.; Wickey, Lee; Ovezmyradov, Mekan; Lau, Chun N.; F Foa Torres, Luis E.; Fistul, Mikhail V.; Efetov, Konstantin B.
We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.
A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entire set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.
Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in the minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.
The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 × 10 - 26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K · p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe.
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.
We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.
Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombination centers.
We present that temperature-dependent measurements of carrier recombination rates using a time-resolved optical pump-probe technique are reported for mid-wave infrared InAs/InAs1-xSbx type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K band-gap of ~235 ± 10 meV was achieved for five unintentionally and four intentionally doped T2SLs. Carrier lifetimes were determined by fitting lifetime models based on Shockley-Read-Hall (SRH), radiative, and Auger recombination processes to the temperature and excess carrier density dependent data. The minority carrier (MC), radiative, and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness for the unintentionally doped T2SLs. The MC lifetime is limited by SRH processes at temperatures below 200 K in the unintentionally doped T2SLs. The extracted SRH defect energy levels were found to be near mid-bandgap. Additionally, it is observed that the MC lifetime is limited by Auger recombination in the intentionally doped T2SLs with doping levels greater than n ~1016 cm-3.
We use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellent quantitative match to all important aspects of the x-ray data.
Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark
Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. This is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.
Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; He, Zhao Y.; Liu, Shi; Zhang, Yong H.; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.
We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 × 10-2 cm2/s. We also report on the device's optical response characteristics at 78 K.
We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.
Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.
Measurements of the electrical and thermal transport properties of one-dimensional nanostructures (e.g., nanotubes and nanowires) typically are obtained without detailed knowledge of the specimen's atomic-scale structure or defects. To address this deficiency we have developed a microfabricated, chip-based characterization platform that enables both transmission electron microscopy (TEM) of atomic structure and defects as well as measurement of the thermal transport properties of individual nanostructures. The platform features a suspended heater line that contacts the center of a suspended nanostructure/nanowire that was placed using in-situ scanning electron microscope nanomanipulators. One key advantage of this platform is that it is possible to measure the thermal conductivity of both halves of the nanostructure (on each side of the central heater), and this feature permits identification of possible changes in thermal conductance along the wire and measurement of the thermal contact resistance. Suspension of the nanostructure across a through-hole enables TEM characterization of the atomic and defect structure (dislocations, stacking faults, etc.) of the test sample. As a model study, we report the use of this platform to measure the thermal conductivity and defect structure of GaN nanowires. The utilization of this platform for the measurements of other nanostructures will also be discussed.
The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.
We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.
Near-field microwave microscopy can be used as an alternative to atomic-force microscopy or Raman microscopy in determination of graphene thickness. We evaluated the values of AC impedance for few layer graphene. The impedance of mono and few-layer graphene at 4GHz was found predominantly active. Near-field microwave microscopy allows simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without device fabrication. Our results may be useful for design of future graphene-based microwave devices.
Graphene has emerged as a promising material for high speed nano-electronics due to the relatively high carrier mobility that can be achieved. To further investigate electronic transport in graphene and reveal its potential for microwave applications, we employed a near-field scanning microwave microscope with the probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator. Because of the balanced probe geometry, our microscope allows for truly localized quantitative characterization of various bulk and low-dimensional materials, with the response region defined by the one micron spacing between the two metallic strips at the probe tip. The single- and few-layer graphene flakes were fabricated by a mechanical cleavage method on 300-nm-thick silicon dioxide grown on low resistivity Si wafer. The flake thickness was determined using both AFM and Raman microscopies. We observe clear correlation between the near-field microwave and far-field optical images of graphene produced by the probe resonant frequency shift and thickness-defined color gradation, respectively. We show that the microwave response of graphene flakes is determined by the local sheet impedance, which is found to be predominantly active. Furthermore, we apply a quantitative electrodynamic model relating the probe resonant frequency shift to 2D conductivity of single- and few-layer graphene. From fitting a model to the experimental data we evaluate graphene sheet resistance as a function of thickness. Near-field scanning microwave microscopy can simultaneously image location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication. The approach may be useful for design of graphene-based microwave transistors, quality control of large area graphene sheets, or investigation of chemical and electrical doping effects on graphene transport properties. We acknowledge support from the DOE Center for Integrated Nanotechnologies user support program (grant No.U2008A061), from the NASA NM Space Grant Consortium program, and from the LANL-NMT MOU program supported by UCDRD.
Resonant plasmonic detectors are potentially important for terahertz (THz) spectroscopic imaging. We have fabricated and characterized antenna coupled detectors that integrate a broad-band antenna, which improves coupling of THz radiation. The vertex of the antenna contains the tuning gates and the bolometric barrier gate. Incident THz radiation may excite 2D plasmons with wave-vectors defined by either a periodic grating gate or a plasmonic cavity determined by ohmic contacts and gate terminals. The latter approach of exciting plasmons in a cavity defined by a short micron-scale channel appears most promising. With this short-channel geometry, we have observed multiple harmonics of THz plasmons. At 20 K with detector bias optimized we report responsivity on resonance of 2.5 kV/W and an NEP of 5 x 10{sup -10} W/Hz{sup 1/2}.
Near-field scanning microwave microscopy is employed for quantitative imaging at 4 GHz of the local impedance for monolayer and few-layer graphene. The microwave response of graphene is found to be thickness dependent and determined by the local sheet resistance of the graphene flake. Calibration of the measurement system and knowledge of the probe geometry allows evaluation of the AC impedance for monolayer and few-layer graphene, which is found to be predominantly active. The use of localized evanescent electromagnetic field in our experiment provides a promising tool for investigations of plasma waves in graphene with wave numbers determined by the spatial spectrum of the near-field. By using near-field microwave microscopy one can perform simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication.
Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature filter solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a filter wheel solution.
Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.
The purpose of this work was to create a THz component set and understanding to aid in the rapid analysis of transient events. This includes the development of fast, tunable, THz detectors, along with filter components for use with standard detectors and accompanying models to simulate detonation signatures. The signature effort was crucial in order to know the spectral range to target for detection. Our approach for frequency agile detection was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays.
The three-dimensional confinement inherent in InAs self-assembled quantum dots (SAQDs) yields vastly different optical properties compared to one-dimensionally confined quantum well systems. Intersubband transitions in quantum dots can emit light normal to the growth surface, whereas transitions in quantum wells emit only parallel to the surface. This is a key difference that can be exploited to create a variety of quantum dot devices that have no quantum well analog. Two significant problems limit the utilization of the beneficial features of SAQDs as mid-infrared emitters. One is the lack of understanding concerning how to electrically inject carriers into electronic states that allow optical transitions to occur efficiently. Engineering of an injector stage leading into the dot can provide current injection into an upper dot state; however, to increase the likelihood of an optical transition, the lower dot states must be emptied faster than upper states are occupied. The second issue is that SAQDs have significant inhomogeneous broadening due to the random size distribution. While this may not be a problem in the long term, this issue can be circumvented by using planar photonic crystal or plasmonic approaches to provide wavelength selectivity or other useful functionality.
Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.
Split grating-gate field effect transistors (FETs) detectors made from high mobility quantum well two-dimensional electron gas material have been shown to exhibit greatly improved tunable resonant photoresponse compared to single grating-gate detectors due to the formation of a 'diode-like' element by the split-gate structure. These detectors are relatively large for FETs (1mm × 1mm area or larger) to match typical focused THz beam spot sizes. In the case where the focused THz spot size is smaller than the detector area, we have found evidence, through positional scanning of the detector element, that only a small portion of the detector is active. To further investigate this situation, detectors with the same channel width (1mm), but various channel lengths, were fabricated and tested. The results indicate that indeed, only a small portion of the split grating gated FET is active. This finding opens up the possibility for further enhancement of detector sensitivity by increasing the active area.
The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.
We report a semiconductor based mechanism for electrically controlling the frequency of light transmitted through extraordinary optical transmission gratings. In doing so, we demonstrate active control over the surface plasmon (SP) resonance at the metal/dielectric interface. The gratings, designed to operate in the midinfrared spectral range, are fabricated upon a doped GaAs epilayer. Tuning of over 25 cm{sup -1} is achieved, and the devices are modeled to investigate the physical origin of the tuning mechanism. Though our structures are designed for the midinfrared, the tuning mechanism demonstrated could be applied to other wavelength ranges, especially the visible and near infrared.
Electroluminescence from self-assembled InAs quantum dots in cascade-like unipolar heterostructures is demonstrated. Initial results show weak luminescence signals in the mid-infrared from such structures, though more recent designs exhibit significantly stronger luminescence with improved designs of the active region of these devices. Further studies of mid-infrared emitting quantum dot structures have shown anisotropically polarized emission at multiple wavelengths. A qualitative explanation of such luminescence is developed and used to understand the growth morphology of buried quantum dots grown on AlAs layers. Finally, a novel design for future mid-infrared quantum dot emitters, intended to increase excited state scattering times and, at the same time, more efficiently extract carriers from the lowest states of our quantum dots, is presented,.
LDRD Project 102662 provided support to pursue experiments aimed at measuring the basic electrodynamic response and possible applications of carbon nanotubes and silicon nanowires at radiofrequency to microwave frequencies, approximately 0.01 to 50 GHz. Under this project, a method was developed to integrate these nanomaterials onto high-frequency compatible co-planar waveguides. The complex reflection and transmission coefficients of the nanomaterials was studied as a function of frequency. From these data, the high-frequency loss characteristics of the nanomaterials were deduced. These data are useful to predict frequency dependence and power dissipation characteristics in new rf/microwave devices incorporating new nanomaterials.
Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.
A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.
A grating-gated field-effect transistor fabricated from a single-quantum well in a high-mobility GaAs-AlGaAs heterostructure is shown to function as a continuously electrically tunable photodetector of terahertz radiation via excitation of resonant plasmon modes in the well. Different harmonics of the plasmon wave vector are mapped, showing different branches of the dispersion relation. As a function of temperature, the resonant response magnitude peaks at around 30 K. Both photovoltaic and photoconductive responses have been observed under different incident power and bias conditions.