He, Xu; Zhou, Yang; Liu, Zechang; Yang, Qing; Sjoberg, Carl M.; Vuilleumier, David; Ding, Carl P.; Liu, Fushui
The direct injection spark ignition (DISI) engine has received considerable attention due to its potential to increase the power density of traditional spark ignition engines while significantly improving fuel economy through lean, unthrottled combustion. However, the market introduction of DISI engines operated in a lean combustion mode is inhibited by their unsatisfactory emissions, especially during cold start conditions that make proper mixture formation more challenging. Ethanol-blended gasoline, now a widely used fuel, makes the cold start of a DISI engine more difficult, leading to higher HC and soot emissions because of the high latent heat of vaporization of ethanol relative to gasoline. This work investigated the impact of coolant temperature on the characteristics of combustion and emissions in a stratified-charge DISI engine fueled with an E30 fuel (i.e. 30% ethanol in gasoline), while the coolant temperature was alternated between four levels (45, 60, 75, and 90 °C) to simulate different conditions throughout the warm-up process. The experiments showed that the coolant temperature affected the post-spark inflammation time, as well as the speed, intensity, and stability of the combustion process in the engine. When the coolant temperature rose, the engine produced more NOX and less CO, PM and HC. In addition, high-speed direct photography was used to obtain crank-angle resolved images of fuel sprays and flames in the cylinder. As the coolant temperature rose, the liquid spray lengths became shorter, reducing the possibility of wall wetting, and reduced irradiance from soot particles also indicated less non-premixed combustion. The in-cylinder imaging results are consistent with the observed combustion and emission characteristics and shed light on the underlying processes. Some potential solutions to the emissions challenges faced here could be either raising in-cylinder temperatures by using trapped residuals or modifying the injection schedule, for example by increasing the number of injections or to inject later in the cycle into a higher-density environment.
Levelized costs of electricity (LCOE) approaching the U.S. Department of Energy Solar Energy Technologies Office 2030 goal of 0.05 $/kWh may be achievable using Brayton power cycles that use supercritical CO2 as the working fluid and flowing solid particles with temperatures >700° C as the heat transfer media. The handling and conveyance of bulk solid particles at these temperatures in an insulated environment is a critical technical challenge that must be solved for this approach to be used. A design study was conducted at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, NM, with the objective of identifying the technical readiness level, performance limits, capital and O&M costs, and expected thermal losses of particle handling and conveyance components in a particle-based CSP plant. Key findings indicated that chutes can be a low-cost option for particle handling but uncertainties in tower costs make it difficult to know whether they can be cost effective in areas above the receiver if tower heights must then be increased. Skips and high temperature particle conveyance technology are available for moving particles up to 640° C. This limits the use of mechanical conveyance above the heat exchanger and suggests vertical integration of the hot storage bin and heat exchanger to facilitate direct gravity fed handling of particles.
This white paper represents the status of Proliferation Resistance and Physical Protection (PR&PP) characteristics for the Gas-cooled Fast reactor (GFR) reference designs selected by the Generation IV International Forum (GIF) GFR System Steering Committee (SSC). The intent is to generate preliminary information about the PR&PP features of the GFR reactor technology and to provide insights for optimizing their PR&PP performance for the benefit of GFR system designers. It updates the GFR analysis published in the 2011 report “Proliferation Resistance and Physical Protection of the Six Generation IV Nuclear Energy Systems”, prepared Jointly by the Proliferation Resistance and Physical Protection Working Group (PRPPWG) and the System Steering Committees and provisional System Steering Committees of the Generation IV International Forum, taking into account the evolution of both the systems, the GIF R&D activities, and an increased understanding of the PR&PP features. The white paper, prepared jointly by the GIF PRPPWG and the GIF GFR SSC, follows the high-level paradigm of the GIF PR&PP Evaluation Methodology to investigate the PR&PP features of the GIF GFR 2400 MWth reference design. The ALLEGRO reactor is also described. The EM2 and HEN MHR reactor are mentioned. An overview of fuel cycle for the GFR reference design and for the ALLEGRO reactor are provided. For PR, the document analyses and discusses the proliferation resistance aspects in terms of robustness against State-based threats associated with diversion of materials, misuse of facilities, breakout scenarios, and production in clandestine facilities. Similarly, for PP, the document discusses the robustness against theft of material and sabotage by non-State actors. The document follows a common template adopted by all the white papers in the updated series.
Fast detection and isolation of faults in a DC microgrid is of particular importance. Fast tripping protection (i) increases the lifetime of power electronics (PE) switches by avoiding high fault current magnitudes and (ii) enhances the controllability of PE converters. This paper proposes a traveling wave (TW) based scheme for fast tripping protection of DC microgrids. The proposed scheme utilizes a discrete wavelet transform (DWT) to calculate the high-frequency components of DC fault currents. Multiresolution analysis (MRA) using DWT is utilized to detect TW components for different frequency ranges. The Parseval energy of the MRA coefficients are then calculated to demonstrate a quantitative relationship between the fault current signal energy and coefficients’ energy. The calculated Parseval energy values are used to train a Support Vector Machine classifier to identify the fault type and a Gaussian Process regression engine to estimate the fault location on the DC cables. The proposed approach is verified by simulating two microgrid test systems in PSCAD/EMTDC.
We explore the character angle dependence of dislocation-solute interactions in a face-centered cubic random Fe0.70Ni0.11Cr0.19 alloy through molecular dynamics (MD) simulations of dislocation mobility. Using the MD mobility data, we determine the phonon and thermally activated solute drag parameters which govern mobility for each dislocation character angle. The resulting parameter set indicates that, surprisingly, the solute energy barrier does not depend on character angle. Instead, only the zero-temperature flow stress—which is dictated by the activation area for thermal activation—is dependent on character angle. By analyzing the line roughness from MD simulations and the geometry of a bowing dislocation line undergoing thermal activation, we conclude that the character angle dependence of the activation area in this alloy is governed by the dislocation line tension, rather than the dislocation-solute interaction itself. Our findings motivate further investigation into the line geometry of dislocations in solid solutions.
Cookoff experiments of powdered and pressed TATB-based plastic bonded explosives (PBXs) have been modeled using a pressure-dependent universal cookoff model (UCM) in combination with a micromechanics pressurization (MMP) model described in a companion paper. The MMP model is based on the accumulation of decomposition gases at nucleation sites that load the surrounding TATB crystals and binder. This is the first cookoff model to use an analytical mechanics solution for compressibility and thermal expansion to describe internal pressurization caused by both temperature and decomposition occurring within closed-pore explosives. This approach produces more accurate predictions of ignition time and pressurization within high-density explosives than simple equation-of-state models. The current paper gives details of the reaction chemistry, model parameters, predicted uncertainty, and validation using experiments from multiple laboratories with errors less than 6 %. The UCM/MMP model framework gives more accurate thermal ignition predictions for high density explosives that are initially impermeable to decomposition gases.
Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.
Electromagnetic (EM) methods are among the original techniques for subsurface characterization in exploration geophysics because of their particular sensitivity to the earth electrical conductivity, a physical property of rocks distinct yet complementary to density, magnetization, and strength. However, this unique ability also makes them sensitive to metallic artifacts - infrastructure such as pipes, cables, and other forms of cultural clutter - the EM footprint of which often far exceeds their diminutive stature when compared to that of bulk rock itself. In the hunt for buried treasure or unexploded ordnance, this is an advantage; in the long-term monitoring of mature oil fields after decades of production, it is quite troublesome indeed. Here we consider the latter through the lens of an evolving energy industry landscape in which the traditional methods of EM characterization for the exploration geophysicist are applied toward emergent problems in well-casing integrity, carbon capture and storage, and overall situational awareness in the oil field. We introduce case studies from these exemplars, showing how signals from metallic artifacts can dominate those from the target itself and impose significant burdens on the requisite simulation complexity. We also show how recent advances in numerical methods mitigate the computational explosivity of infrastructure modeling, providing feasible and real-time analysis tools for the desktop geophysicist. Lastly, we demonstrate through comparison of field data and simulation results that incorporation of infrastructure into the analysis of such geophysical data is, in a growing number of cases, a requisite but now manageable step.
Montmorillonite (MMT) clays are important industrial materials used as catalysts, chemical sorbents and fillers in polymer–clay nanocomposites. The layered structure of these clays has motivated research into further applications of these low-cost materials, including use as ion exchange media and solid-state ionic conductors. In these applications, the mechanical properties of MMT are key when considering long-term, reliable performance. Previous studies have focused on the mechanical properties of nanocomposites with MMT as the minority component or pure MMT thin films. In this work, the microstructure and mechanical properties of pure MMT and majority MMT/polyethylene composites pressed into dense pellets are examined. Characterization methods such as X-ray diffraction, atomic force microscopy and scanning electron microscopy together with nanoindentation reveal important structure–property relationships in the clay-based materials. Utilizing these techniques, we have discovered that MMT processing impacts the layered microstructure, chemical stability and, critically, the elastic modulus and hardness of bulk MMT samples. Particularly, the density of the pellets and the ordering of the clay platelets within them strongly influence the elastic modulus and hardness of the pellets. By increasing pressing force or by incorporating secondary components, the density, and therefore mechanical properties, can be increased. If the layered structure of the clay is destroyed by exfoliation, the mechanical properties will be compromised. Understanding these relationships will help guide new studies to engineer mechanically stable MMT-based materials for industrial applications. Graphical abstract: [Figure not available: see fulltext.].
Agencies that monitor for underground nuclear tests are interested in techniques that automatically characterize mining blasts to reduce the human analyst effort required to produce high-quality event bulletins. Waveform correlation is effective in finding similar waveforms from repeating seismic events, including mining blasts. We report the results of an experiment to detect and identify mining blasts for two regions, Wyoming (U.S.A.) and Scandinavia, using waveform templates recorded by multiple International Monitoring System stations of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO PrepCom) for up to 10 yr prior to the time of interest. We discuss approaches for template selection, threshold setting, and event detection that are specialized for characterizing mining blasts using a sparse, global network. We apply the approaches to one week of data for each of the two regions to evaluate the potential for establishing a set of standards for waveform correlation processing of mining blasts that can be generally applied to operational monitoring systems with a sparse network. We compare candidate events detected with our processing methods to the Reviewed Event Bulletin of the International Data Centre to assess potential reduction in analyst workload.
Stainless steels are susceptible to localized forms of corrosion attack, such as pitting. The size and lifetime of a nucleated pit can vary, depending on a critical potential or current density criterion, which determines if the pit repassivates or continues growing. This work uses finite element method (FEM) modeling to compare the critical pit radii predicted by thermodynamic and kinetic repassivation criteria. Experimental electrochemical boundary conditions are used to capture the active pit kinetics. Geometric and environmental parameters, such as the pit shape and size (analogous to additively manufactured lack-of-fusion pores), solution concentration, and water layer thickness were considered to assess their impact on the pit repassivation criterion. The critical pit radius (the transition point from stable growth to repassivation) predicted for a hemispherical pit was larger when using the repassivation potential (Erp) criteria, as opposed to the current density criteria (pit stability product). Including both the pit stability product and Erp into its calculations, the analytical maximum pit model predicted a critical radius two times more conservative than the FEA approach, under the conditions studied herein. The complex pits representing lack-of-fusion pores were shown to have minimal impact on the critical radius in atmospheric conditions.
The progression of wind turbine technology has led to wind turbines being incredibly optimized machines often approaching their theoretical maximum production capabilities. When placed together in arrays to make wind farms, however, they are subject to wake interference that greatly reduces downstream turbines' power production, increases structural loading and maintenance, reduces their lifetimes, and ultimately increases the levelized cost of energy. Development of techniques to manage wakes and operate larger and larger arrays of turbines more efficiently is now a crucial field of research. Herein, four wake management techniques in various states of development are reviewed. These include axial induction control, wake steering, the latter two combined, and active wake control. Each of these is reviewed in terms of its control strategies and use for power maximization, load reduction, and ancillary services. By evaluating existing research, several directions for future research are suggested.
The purpose of the Sandia CIO Cloud Strategy is to establish the strategic direction for the adoption of cloud services and technologies as the prevailing IT solution for Sandia National Laboratories. Sandia’s Chief Information Officer (CIO) will champion unified, site-wide adoption of cloud and will amplify business and mission impacts across the Labs. Sandia’s CIO Cloud Strategy aligns to the Federal Cloud Computing Strategy1 (Cloud Smart) and the Sandia Management and Operating Contract (Prime Contract).
Poondla, Yasvanth; Goldstein, David; Varghese, Philip; Clarke, Peter; Moore, Christopher H.
The goal of this work is to build up the capability of quasi-particle simulation (QuiPS), a novel flow solver, such that it can adequately model the rarefied portion of an atmospheric reentry trajectory. Direct simulation Monte Carlo (DSMC) is the conventional solver for such conditions, but struggles to resolve transient flows, trace species, and high-level internal energy states due to stochastic noise. Quasi-particle simulation (QuiPS) is a novel Boltzmann solver that describes a system with a discretized, truncated velocity distribution function. The resulting fixed-velocity, variable weight quasi-particles enable smooth variation of macroscopic properties. The distribution function description enables the use of a variance-reduced collision model, greatly minimizing expense near equilibrium. This work presents the addition of a neutral air chemistry model to QuiPS and some demonstrative 0D simulations. The explicit representation of internal distributions in QuiPS reveals some of the flaws in existing physics models. Variance reduction, a key feature of QuiPS, can greatly reduce expense of multi-dimensional calculations, but is only cheaper when the gas composition is near chemical equilibrium.