Publications

Results 251–300 of 96,771

Search results

Jump to search filters

Fluid-Dynamic Mechanisms Underlying Wind Turbine Wake Control with Strouhal-Timed Actuation

Energies

Cheung, Lawrence C.; Brown, Kenneth B.; Houck, Daniel; deVelder, Nathaniel d.

A reduction in wake effects in large wind farms through wake-aware control has considerable potential to improve farm efficiency. This work examines the success of several emerging, empirically derived control methods that modify wind turbine wakes (i.e., the pulse method, helix method, and related methods) based on Strouhal numbers on the (Formula presented.). Drawing on previous work in the literature for jet and bluff-body flows, the analyses leverage the normal-mode representation of wake instabilities to characterize the large-scale wake meandering observed in actuated wakes. Idealized large-eddy simulations (LES) using an actuator-line representation of the turbine blades indicate that the (Formula presented.) and (Formula presented.) modes, which correspond to the pulse and helix forcing strategies, respectively, have faster initial growth rates than higher-order modes, suggesting these lower-order modes are more appropriate for wake control. Exciting these lower-order modes with periodic pitching of the blades produces increased modal growth, higher entrainment into the wake, and faster wake recovery. Modal energy gain and the entrainment rate both increase with streamwise distance from the rotor until the intermediate wake. This suggests that the wake meandering dynamics, which share close ties with the relatively well-characterized meandering dynamics in jet and bluff-body flows, are an essential component of the success of wind turbine wake control methods. A spatial linear stability analysis is also performed on the wake flows and yields insights on the modal evolution. In the context of the normal-mode representation of wake instabilities, these findings represent the first literature examining the characteristics of the wake meandering stemming from intentional Strouhal-timed wake actuation, and they help guide the ongoing work to understand the fluid-dynamic origins of the success of the pulse, helix, and related methods.

More Details

Building an ab initio solvated DNA model using Euclidean neural networks

PLoS ONE

Lee, Alex J.; Rackers, Joshua R.; Pathak, Shivesh; Bricker, William P.

Accurately modeling large biomolecules such as DNA from first principles is fundamentally challenging due to the steep computational scaling of ab initio quantum chemistry methods. This limitation becomes even more prominent when modeling biomolecules in solution due to the need to include large numbers of solvent molecules. We present a machine-learned electron density model based on a Euclidean neural network framework that includes a built-in understanding of equivariance to model explicitly solvated double-stranded DNA. By training the machine learning model using molecular fragments that sample the key DNA and solvent interactions, we show that the model predicts electron densities of arbitrary systems of solvated DNA accurately, resolves polarization effects that are neglected by classical force fields, and captures the physics of the DNA-solvent interaction at the ab initio level.

More Details

Sierra/SD – Its2Sierra – User’s Manual – 5.18

Laros, James H.; Bunting, Gregory B.; Day, David M.; Dohrmann, Clark R.; Lindsay, Payton L.; Pepe, Justin P.; Plews, Julia A.

The Integrated Tiger Series (ITS) generates a database containing energy deposition data. This data, when stored on an Exodus file, is not typically suitable for analysis within Sierra Mechanics for finite element analysis. The its2sierra tool maps data from the ITS database to the Sierra database.

More Details

On the subject of large-scale pool fires and turbulent boundary layer interactions

Physics of Fluids

Domino, Stefan P.

The role to which a realistic inflow turbulent boundary layer (TBL) influences transient and mean large-scale pool fire quantities of interest (QoIs) is numerically investigated. High-fidelity, low-Mach large-eddy simulations that activate low-dissipation, unstructured numerics are conducted using an unsteady flamelet combustion modeling approach with mutiphysics coupling to soot and participating media radiation transport. Three inlet profile configurations are exercised for a large-scale, high-aspect rectangular pool that is oriented perpendicular to the flow direction: a time-varying, TBL inflow profile obtained from a periodic precursor simulation, the time-mean of the transient TBL, and a steady power-law inflow profile that replicates the mean TBL crosswind velocity of 10.0 m/s at a vertical height of 10 m. Results include both qualitative transient flame evolution and quantitative flame shape with ground-level temperature and convective/radiative heat flux profiles. While transient fire events, which are driven by burst-sweep TBL coupling, such as blow-off and reattachment are vastly different in the TBL case (contributing to increased root mean square QoI fluctuation prediction and disparate flame lengths), mean surface QoI magnitudes are similar. Quadrant analysis demonstrates that the TBL configuration modifies burst-sweep phenomena at windward pool locations, while leeward recovery is found. Positive fluctuations of convective heat flux correlate with fast moving fluid away from the pool surface due to intermittent combustion events.

More Details

Impacts to FeRAM Design Arising From Interfacial Dielectric Layers and Wake-Up Modulation in Ferroelectric Hafnium Zirconium Oxide

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Henry, Michael D.; Esteves, Giovanni E.; Smith, Sean W.; Fields, Shelby S.; Jaszewski, Samantha T.; Heinrich, Helge; Ihlefeld, Jon F.

As ferroelectric hafnium zirconium oxide (HZO) becomes more widely utilized in ferroelectric microelectronics, integration impacts of intentional and nonintentional dielectric interfaces and their effects upon the ferroelectric film wake-up (WU) and circuit parameters become important to understand. In this work, the effect of the addition of a linear dielectric aluminum oxide, Al2O3, below a ferroelectric Hf0.58Zr0.42O2 film in a capacitor structure for FeRAM applications with niobium nitride (NbN) electrodes was measured. Depolarization fields resulting from the linear dielectric is observed to induce a reduction of the remanent polarization of the ferroelectric. Addition of the aluminum oxide also impacts the WU of the HZO with respect to the cycling voltage applied. Intricately linked to the design of a FeRAM 1C/1T cell, the metal-ferroelectric-insulator-metal (MFIM) devices are observed to significantly shift charge related to the read states based on aluminum oxide thickness and WU cycling voltage. A 33% reduction in the separation of read states are measured, which complicates how a memory cell is designed and illustrates the importance of clean interfaces in devices.

More Details

High-temperature chromium diffusion in austenitic stainless steel: Ab initio molecular dynamics simulations

Chemical Physics Letters

Weck, Philippe F.; Kim, Eunja

Chromium self-diffusion through stainless steel (SS) matrix and along grain boundaries is an important mechanism controlling SS structural materials corrosion. Cr diffusion in austenitic SS was simulated using canonical ab initio molecular dynamics with realistic models of type-316 SS bulk, with and without Cr vacancies, and a low-energy Σ3 twin boundary typically observed at active corrosion sites. Cr self-diffusion coefficients at 750 and 850 °C calculated using Einstein's diffusion equation are 4.2 × 10−6 and 8.1 × 10−6 Å2 ps−1 in pristine bulk, 3.8 × 10−3 and 5.5 × 10−3 Å2 ps−1 in bulk including Cr vacancies, and 9.5 × 10−2 and 1.0 × 10−1 Å2 ps−1 at a Σ3[1 1 1]60° twin boundary.

More Details

Elastic functional changepoint detection of climate impacts from localized sources

Environmetrics

Tucker, James D.; Yarger, Andrew

Detecting changepoints in functional data has become an important problem as interest in monitoring of climate phenomenon has increased, where the data is functional in nature. The observed data often contains both amplitude ((Formula presented.) -axis) and phase ((Formula presented.) -axis) variability. If not accounted for properly, true changepoints may be undetected, and the estimated underlying mean change functions will be incorrect. In this article, an elastic functional changepoint method is developed which properly accounts for these types of variability. The method can detect amplitude and phase changepoints which current methods in the literature do not, as they focus solely on the amplitude changepoint. This method can easily be implemented using the functions directly or can be computed via functional principal component analysis to ease the computational burden. We apply the method and its nonelastic competitors to both simulated data and observed data to show its efficiency in handling data with phase variation with both amplitude and phase changepoints. We use the method to evaluate potential changes in stratospheric temperature due to the eruption of Mt. Pinatubo in the Philippines in June 1991. Using an epidemic changepoint model, we find evidence of a increase in stratospheric temperature during a period that contains the immediate aftermath of Mt. Pinatubo, with most detected changepoints occurring in the tropics as expected.

More Details

Parametric evaluation of ducted fuel injection in an optically accessible mixing-controlled compression-ignition engine with two- and four-duct assemblies

International Journal of Engine Research

Yraguen, Boni F.; Steinberg, Adam M.; Nilsen, Christopher W.; Biles, Drummond E.; Mueller, Charles J.

Ducted fuel injection (DFI) is a strategy to improve fuel/charge-gas mixing in direct-injection compression-ignition engines. DFI involves injecting fuel along the axis of a small tube in the combustion chamber, which promotes the formation of locally leaner mixtures in the autoignition zone relative to conventional diesel combustion. Previous work has demonstrated that DFI is effective at curtailing engine-out soot emissions across a wide range of operating conditions. This study extends previous investigations, presenting engine-out emissions and efficiency trends between ducted two-orifice and ducted four-orifice injector tip configurations. For each configuration, parameters investigated include injection pressure, injection duration, intake manifold pressure, intake manifold temperature, start of combustion timing, and intake-oxygen mole fraction. For both configurations and across all parameters, DFI reduced engine-out soot emissions compared to conventional diesel combustion, with little effect on other emissions and engine efficiency. Emissions trends for both configurations were qualitatively the same across the parameters investigated. The four-duct configuration had higher thermal efficiency and indicated-specific engine-out nitrogen oxide emissions but lower indicated-specific engine-out hydrocarbon and carbon monoxide emissions than the two-duct assembly. Both configurations achieved indicated-specific engine-out emissions for both soot and nitrogen oxides that comply with current on- and off-road heavy-duty regulations in the United States without exhaust-gas aftertreatment at an intake-oxygen mole fraction of 12%. High-speed in-cylinder imaging of natural soot luminosity shows that some conditions include a second soot-production phase late in the cycle. The probability of these late-cycle events is sensitive to both the number of ducted sprays and the operating conditions.

More Details

SIERRA Multimechanics Module: Aria Verification Manual - Version 5.18

Clausen, Jonathan C.; Brunini, Victor B.; Collins, Lincoln; Knaus, Robert C.; Kucala, Alec K.; Lin, Stephen; Matula, Neil M.; Moser, Daniel M.; Phillips, Malachi P.; Ransegnola, Thomas M.; Subia, Samuel R.; Vasyliv, Yaroslav V.; Voskuilen, Tyler V.; Smith, Timothy A.; Carnes, Brian C.; Lamb, Justin M.

Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verificationtest suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the testchecked under mesh refinement against the correct analytic result. For each of the tests presented in thisdocument the test setup, derivation of the analytic solution, and comparison of the code results to theanalytic solution is provided.

More Details

Managing potential environmental and human health risks of lead halide perovskite photovoltaic modules

Solar Energy

Rencheck, Mitchell L.; Libby, Cara; Montgomery, Angelique; Stein, Joshua S.

Perovskite solar cells (PSCs) are emerging photovoltaic (PV) technologies capable of matching power conversion efficiencies (PCEs) of current PV technologies in the market at lower manufacturing costs, making perovskite solar modules (PSMs) cost competitive if manufactured at scale and perform with minimal degradation. PSCs with the highest PCEs, to date, are lead halide perovskites. Lead presents potential environmental and human health risks if PSMs are to be commercialized, as the lead in PSMs are more soluble in water compared to other PV technologies. Therefore, prior to commercialization of PSMs, it is important to highlight, identify, and establish the potential environmental and human health risks of PSMs as well as develop methods for assessing the potential risks. Here, we identify and discuss a variety of international standards, U.S. regulations, and permits applicable to PSM deployment that relate to the potential environmental and human health risks associated with PSMs. The potential risks for lead and other hazardous material exposures to humans and the environment are outlined which include water quality, air quality, human health, wildlife, land use, and soil contamination, followed by examples of how developers of other PV technologies have navigated human health and environmental risks previously. Potential experimentation, methodology, and research efforts are proposed to elucidate and characterize potential lead leaching risks and concerns pertaining to fires, in-field module damage, and sampling and leach testing of PSMs at end of life. Lastly, lower technology readiness level solutions to mitigate lead leaching, currently being explored for PSMs, are discussed. PSMs have the potential to become a cost competitive PV technology for the solar industry and taking steps toward understanding, identifying, and creating solutions to mitigate potential environmental and human health risks will aid in improving their commercial viability.

More Details

Sierra/SD Verification Test Manual 5.18

Laros, James H.; Bunting, Gregory B.; Day, David M.; Dohrmann, Clark R.; Lindsay, Payton L.; Pepe, Justin P.; Plews, Julia A.

Tests from the Sierra Structural Dynamics verification test suite are reviewed. Each is run nightly and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

A semi-supervised learning method to produce explainable radioisotope proportion estimates for NaI-based synthetic and measured gamma spectra

Van Omen, Alan J.; Morrow, Tyler M.

Quantifying the radioactive sources present in gamma spectra is an ever-present and growing national security mission and a time-consuming process for human analysts. While machine learning models exist that are trained to estimate radioisotope proportions in gamma spectra, few address the eventual need to provide explanatory outputs beyond the estimation task. In this work, we develop two machine learning models for a NaI detector measurements: one to perform the estimation task, and the other to characterize the first model’s ability to provide reasonable estimates. To ensure the first model exhibits a behavior that can be characterized by the second model, the first model is trained using a custom, semi-supervised loss function which constrains proportion estimates to be explainable in terms of a spectral reconstruction. The second auxiliary model is an out-of-distribution detection function (a type of meta-model) leveraging the proportion estimates of the first model to identify when a spectrum is sufficiently unique from the training domain and thus is out-of-scope for the model. In demonstrating the efficacy of this approach, we encourage the use of meta-models to better explain ML outputs used in radiation detection and increase trust.

More Details

Controlling radioisotope proportions when randomly sampling from Dirichlet distributions in PyRIID

Van Omen, Alan J.; Morrow, Tyler M.

As machine learning models for radioisotope quantification become more powerful, likewise the need for high-quality synthetic training data grows as well. For problem spaces that involve estimating the relative isotopic proportions of various sources in gamma spectra it is necessary to generate training data that accurately represents the variance of proportions encountered. In this report, we aim to provide guidance on how to target a desired variance of proportions which are randomly when using the PyRIID Seed Mixer, which samples from a Dirichlet distribution. We provide a method for properly parameterizing the Dirichlet distribution in order to maintain a constant variance across an arbitrary number of dimensions, where each dimension represents a distinct source template being mixed. We demonstrate that our method successfully parameterizes the Dirichlet distribution to target a specific variance of proportions, provided that several conditions are met. This allows us to follow a principled technique for controlling how random mixture proportions are generated which are then used downstream in the synthesis process to produce the final, noisy gamma spectra.

More Details

The Influence of Nominal Composition on the Microstructure, Tensile Properties, and Weldability of Cast Monel Alloys

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Farnin, Christopher J.; Coker, Eric N.; Salinas, Perla A.; Dupont, John N.

Cast Monel alloys are used in many industrial applications that require a combination of good mechanical properties and excellent resistance to corrosion. Despite relative widespread use, there has been limited prior research investigating the fundamental composition–structure–property relationships. In this work, microstructural characterization, thermal analysis, electron probe microanalysis, tensile testing, and Varestraint testing were used to assess the effects of variations in nominal composition on the solidification path, microstructure, mechanical properties, and solidification cracking susceptibility of cast Monel alloys. It was found that Si segregation caused the formation of silicides at the end of solidification in grades containing at least 3 wt pct Si. While increases to Si content led to significant improvements in strengthening due to the precipitation of β1-Ni3Si, the silicide eutectics acted as crack nucleation sites during tensile loading which severely reduced ductility. The solidification cracking susceptibility of low-Si Monel alloys was found to be relatively low. However, increases to Si concentration and the onset of associated eutectic reactions increased the solidification temperature range and drastically reduced cracking resistance. Increases in the Cu and Mn concentrations were found to reduce the solubility limit of Si in austenite which promoted additional eutectic formation and exacerbated the reductions in ductility and/or weldability.

More Details

SIERRA Low Mach Module: Fuego Verification Manual - Version 5.18

Clausen, Jonathan C.; Brunini, Victor B.; Collins, Lincoln; Knaus, Robert C.; Kucala, Alec K.; Lin, Stephen; Matula, Neil M.; Moser, Daniel M.; Phillips, Malachi P.; Ransegnola, Thomas M.; Subia, Samuel R.; Vasyliv, Yaroslav V.; Voskuilen, Tyler V.; Smith, Timothy A.; Lamb, Justin M.

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of theASC fire environment simulation project. The fire environment simulation project is directed atcharacterizing both open large-scale pool fires and building enclosure fires. Fuego represents theturbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, andabsorption coefficient model portion of the simulation software.

More Details

Sierra/SD Example Problems Manual 5.18

Laros, James H.; Bunting, Gregory B.; Day, David M.; Dohrmann, Clark R.; Lindsay, Payton L.; Pepe, Justin P.; Plews, Julia A.

The Example Problems Manual supplements the User's Manual and the Theory Manual. The goal of the Example Problems Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User's Manual for a complete list of the options for a solution case. All the examples are part of the \salinas test suite. Each runs as is.

More Details

Early Detection of Li-Ion Battery Thermal Runaway Using Commercial Diagnostic Technologies

Journal of the Electrochemical Society

Torres-Castro, Loraine T.; Bates, Alex M.; Johnson, Nathan B.; Quintana, Genaro Q.; Gray, Lucas S.; Langendorf, Jill L.

The rate of electric vehicle (EV) adoption, powered by the Li-ion battery, has grown exponentially; largely driven by technological advancements, consumer demand, and global initiatives to reduce carbon emissions. As a result, it is imperative to understand the state of stability (SoS) of the cells inside an EV battery pack. That understanding will enable the warning of or prevention against catastrophic failures that can lead to serious injury or even, loss of life. The present work explores rapid electrochemical impedance spectroscopy (EIS) coupled with gas sensing technology as diagnostics to monitor cells and packs for failure markers. These failure markers can then be used for onboard assessment of SoS. Experimental results explore key changes in single cells and packs undergoing thermal or electrical abuse. Rapid EIS showed longer warning times, followed by VOC sensors, and then H2 sensors. While rapid EIS gives the longest warning time, with the failure marker often appearing before the cell vents, the reliability of identifying impedance changes in single cells within a pack decreases as the pack complexity increases. This provides empirical evidence to support the significant role that cell packaging and battery engineering intricacies play in monitoring the SoS.

More Details

Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO2 to ethylene and CO

Nature Communications

Yang, Ji; Wang, Lu; Wan, Jiawei; El Gabaly Marquez, Farid E.; Fernandes Cauduro, Andre L.; Chen, Jeng-Lung; Hsu, Liang-Ching; Lee, Daewon; Zhao, Xiao; Zheng, Haimei; Salmeron, Miquel; Dong, Zhun; Lin, Hongfei; Somorjai, Gabor A.; Prendergast, David; Jiang, De-En; Singh, Seema; Su, Ji

Developing atomically synergistic bifunctional catalysts relies on the creation of colocalized active atoms to facilitate distinct elementary steps in catalytic cycles. Herein, we show that the atomically-synergistic binuclear-site catalyst (ABC) consisting of Znδ+ -O-Cr6+ on zeolite SSZ-13 displays unique catalytic properties for iso-stoichiometric co-conversion of ethane and CO2. Ethylene selectivity and utilization of converted CO2 can reach 100 % and 99.0% under 500 °C at ethane conversion of 9.6%, respectively. In-situ/ex-situ spectroscopic studies and DFT calculations reveal atomic synergies between acidic Zn and redox Cr sites. Znδ+ (0 < δ < 2) sites facilitate β-C-H bond cleavage in ethane and the formation of Zn-Hδ- hydride, thereby the enhanced basicity promotes CO2 adsorption/activation and prevents ethane C-C bond scission. The redox Cr site accelerates CO2 dissociation by replenishing lattice oxygen and facilitates H2O formation/desorption. This study presents the advantages of the ABC concept, paving the way for the rational design of novel advanced catalysts.

More Details

Protocol-dependent frictional granular jamming simulations: cyclical, compression, and expansion

Frontiers in Soft Matter

Lechman, Jeremy B.; Grest, Gary S.; Santos, A.P.; Srivastava, Ishan; Silbert, Leonardo E.

Granular matter takes many paths to pack in natural and industrial processes. The path influences the packing microstructure, particularly for frictional grains. We perform discrete element modeling simulations of different paths to construct packings of frictional spheres. Specifically, we explore four stress-controlled protocols implementing packing expansions and compressions in various combinations thereof. We characterize the eventual packed states through their dependence of the packing fraction and coordination number on packing pressure, identifying non-monotonicities with pressure that correlate with the fraction of frictional contacts. These stress-controlled, bulk-like particle simulations access very low-pressure packings, namely, the marginally stable limit, and demonstrate the strong protocol dependence of frictional granular matter.

More Details

A soft departure from jamming: the compaction of deformable granular matter under high pressures

Soft Matter

Clemmer, Joel T.; Monti, Joseph M.; Lechman, Jeremy B.

The high-pressure compaction of three dimensional granular packings is simulated using a bonded particle model (BPM) to capture linear elastic deformation. In the model, grains are represented by a collection of point particles connected by bonds. A simple multibody interaction is introduced to control Poisson's ratio and the arrangement of particles on the surface of a grain is varied to model both high- and low-frictional grains. At low pressures, the growth in packing fraction and coordination number follow the expected behavior near jamming and exhibit friction dependence. As the pressure increases, deviations from the low-pressure power-law scaling emerge after the packing fraction grows by approximately 0.1 and results from simulations with different friction coefficients converge. These results are compared to predictions from traditional discrete element method simulations which, depending on the definition of packing fraction and coordination number, may only differ by a factor of two. As grains deform under compaction, the average volumetric strain and asphericity, a measure of the change in the shape of grains, are found to grow as power laws and depend heavily on the Poisson's ratio of the constituent solid. Larger Poisson's ratios are associated with less volumetric strain and more asphericity and the apparent power-law exponent of the asphericity may vary. The elastic properties of the packed grains are also calculated as a function of packing fraction. In particular, we find the Poisson's ratio near jamming is 1/2 but decreases to around 1/4 before rising again as systems densify.

More Details

Inversion for Thermal Properties with Frequency Domain Thermoreflectance

ACS Applied Materials and Interfaces

Treweek, Benjamin T.; Laros, James H.; Hodges, Wyatt L.; Jarzembski, Amun J.; Bahr, Matthew; Jordan, Matthew J.; McDonald, Anthony E.; Yates, Luke Y.; Walsh, Timothy W.; Pickrell, Gregory P.

3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.

More Details

Development of “GaSb-on-silicon” metamorphic substrates for optoelectronic device growth

Journal of Vacuum Science and Technology B

Ince, Fatih F.; Frost, Mega; Shima, Darryl; Addamane, Sadhvikas J.; Canedy, Chadwick L.; Bewley, William W.; Tomasulo, Stephanie; Kim, Chul S.; Vurgaftman, Igor; Meyer, Jerry R.; Balakrishnan, Ganesh

The epitaxial development and characterization of metamorphic “GaSb-on-silicon” buffers as substrates for antimonide devices is presented. The approach involves the growth of a spontaneously and fully relaxed GaSb metamorphic buffer in a primary epitaxial reactor, and use of the resulting “GaSb-on-silicon” wafer to grow subsequent layers in a secondary epitaxial reactor. The buffer growth involves four steps—silicon substrate preparation for oxide removal, nucleation of AlSb on silicon, growth of the GaSb buffer, and finally capping of the buffer to prevent oxidation. This approach on miscut silicon substrates leads to a buffer with negligible antiphase domain density. The growth of this buffer is based on inducing interfacial misfit dislocations between an AlSb nucleation layer and the underlying silicon substrate, which results in a fully relaxed GaSb buffer. A 1 μm thick GaSb layer buffer grown on silicon has ~9.2 × 107 dislocations/cm2. The complete lack of strain in the epitaxial structure allows subsequent growths to be accurately lattice matched, thus making the approach ideal for use as a substrate. Here we characterize the GaSb-on-silicon wafer using high-resolution x-ray diffraction and transmission electron microscopy. The concept’s feasibility is demonstrated by growing interband cascade light emitting devices on the GaSb-on-silicon wafer. The performance of the resulting LEDs on silicon approaches that of counterparts grown lattice matched on GaSb.

More Details

Generating and processing optical waveforms using spectral singularities

Physical Review A

Cerjan, Alexander W.; Douglas Stone, A.; Farhi, Asaf

Here, we show that a laser at threshold can be utilized to generate the class of coherent and transform-limited waveforms (vt — z)mei(kz—ωt) at optical frequencies. We derive these properties analytically and demonstrate them in semiclassical time-domain laser simulations. We then utilize these waveforms to expand other waveforms with high modulation frequencies and demonstrate theoretically the feasibility of complex-frequency coherent absorption at optical frequencies, with efficient energy transduction and cavity loading. This approach has potential applications in quantum computing, photonic circuits, and biomedicine.

More Details

Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?

ACS Applied Energy Materials

Hill, Ryan C.; Peretti, Amanda S.; Maraschky, Adam M.; Small, Leo J.; Spoerke, Erik D.; Cheng, Yang T.

Alkali metals are among the most desirable negative electrodes for long duration energy storage due to their extremely high capacities. Currently, only high-temperature (>250 °C) batteries have successfully used alkali electrodes in commercial applications, due to limitations imposed by solid electrolytes, such as low conductivity at moderate temperatures and susceptibility to dendrites. Toward enabling the next generation of grid-scale, long duration batteries, we aim to develop molten sodium (Na) systems that operate with commercially attractive performance metrics including high current density (>100 mA cm-2), low temperature (<200 °C), and long discharge times (>12 h). In this work, we focus on the performance of NaSICON solid electrolytes in sodium symmetric cells at 110 °C. Specifically, we use a tin (Sn) coating on NaSICON to reduce interfacial resistance by a factor of 10, enabling molten Na symmetric cell operation with “discharge” durations up to 23 h at 100 mA cm-2 and 110 °C. Unidirectional galvanostatic testing shows a 70% overpotential reduction, and electrochemical impedance spectroscopy (EIS) highlights the reduction in interfacial resistance due to the Sn coating. Detailed scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) show that Sn-coated NaSICON enables current densities of up to 500 mA cm-2 at 110 °C by suppressing dendrite formation at the plating interface (Mode I). This analysis also provides a mechanistic understanding of dendrite formation at current densities up to 1000 mA cm-2, highlighting the importance of effective coatings that will enable advanced battery technologies for long-term energy storage.

More Details

Correlating real-world incidents with vessel traffic off the coast of Hawaii, 2017–2020

Discover Oceans

Henriksen, Amelia

Because of the high-risk nature of emergencies and illegal activities at sea, it is critical that algorithms designed to detect anomalies from maritime traffic data be robust. However, there exist no publicly available maritime traffic data sets with real-world expert-labeled anomalies. As a result, most anomaly detection algorithms for maritime traffic are validated without ground truth. We introduce the HawaiiCoast_GT data set, the first ever publicly available automatic identification system (AIS) data set with a large corresponding set of true anomalous incidents. This data set—cleaned and curated from raw Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA) automatic identification system (AIS) data—covers Hawaii’s coastal waters for four years (2017–2020) and contains 88,749,176 AIS points for a total of 2622 unique vessels. This includes 208 labeled tracks corresponding to 154 rigorously documented real-world incidents.

More Details

First-order crosstalk mitigation in parallel quantum gates driven with multi-photon transitions

Applied Physics Letters

Chow, Matthew N.; Yale, Christopher G.; Grinevich, Ashlyn D.; Ivory, Megan K.; Lobser, Daniel L.; Revelle, Melissa R.; Clark, Susan M.

We demonstrate an order of magnitude reduction in the sensitivity to optical crosstalk for neighboring trapped-ion qubits during simultaneous single-qubit gates driven with individual addressing beams. Gates are implemented via two-photon Raman transitions, where crosstalk is mitigated by offsetting the drive frequencies for each qubit to avoid first-order crosstalk effects from inter-beam two-photon resonance. The technique is simple to implement, and we find that phase-dependent crosstalk due to optical interference is reduced on the most impacted neighbor from a maximal fractional rotation error of 0.185 ( 4 ) without crosstalk mitigation to ≤ 0.006 with the mitigation strategy. Furthermore, we characterize first-order crosstalk in the two-qubit gate and avoid the resulting rotation errors for the arbitrary-axis Mølmer-Sørensen gate via a phase-agnostic composite gate. Finally, we demonstrate holistic system performance by constructing a composite CNOT gate using the improved single-qubit gates and phase-agnostic two-qubit gate. This work is done on the Quantum Scientific Computing Open User Testbed; however, our methods are widely applicable for individual addressing Raman gates and impose no significant overhead, enabling immediate improvement for quantum processors that incorporate this technique.

More Details

A comparison of model validation approaches for echo state networks using climate model replicates

Spatial Statistics

Mcclernon, Kellie L.; Goode, Katherine J.; Ries, Daniel R.

As global temperatures continue to rise, climate mitigation strategies such as stratospheric aerosol injections (SAI) are increasingly discussed, but the downstream effects of these strategies are not well understood. As such, there is interest in developing statistical methods to quantify the evolution of climate variable relationships during the time period surrounding an SAI. Feature importance applied to echo state network (ESN) models has been proposed as a way to understand the effects of SAI using a data-driven model. This approach depends on the ESN fitting the data well. If not, the feature importance may place importance on features that are not representative of the underlying relationships. Typically, time series prediction models such as ESNs are assessed using out-of-sample performance metrics that divide the times series into separate training and testing sets. However, this model assessment approach is geared towards forecasting applications and not scenarios such as the motivating SAI example where the objective is using a data driven model to capture variable relationships. Here, in this paper, we demonstrate a novel use of climate model replicates to investigate the applicability of the commonly used repeated hold-out model assessment approach for the SAI application. Simulations of an SAI are generated using a simplified climate model, and different initialization conditions are used to provide independent training and testing sets containing the same SAI event. The climate model replicates enable out-of-sample measures of model performance, which are compared to the single time series hold-out validation approach. For our case study, it is found that the repeated hold-out sample performance is comparable, but conservative, to the replicate out-of-sample performance when the training set contains enough time after the aerosol injection.

More Details

An implicit-in-time DPG formulation of the 1D1V Vlasov-Poisson equations

Computers and Mathematics with Applications

Roberts, Nathan V.; Miller, Sean T.; Bond, Stephen D.; Cyr, Eric C.

Efficient solution of the Vlasov equation, which can be up to six-dimensional, is key to the simulation of many difficult problems in plasma physics. The discontinuous Petrov-Galerkin (DPG) finite element methodology provides a framework for the development of stable (in the sense of Ladyzhenskaya–Babuška–Brezzi conditions) finite element formulations, with built-in mechanisms for adaptivity. While DPG has been studied extensively in the context of steady-state problems and to a lesser extent with space-time discretizations of transient problems, relatively little attention has been paid to time-marching approaches. In the present work, we study a first application of time-marching DPG to the Vlasov equation, using backward Euler for a Vlasov-Poisson discretization. We demonstrate adaptive mesh refinement for two problems: the two-stream instability problem, and a cold diode problem. We believe the present work is novel both in its application of unstructured adaptive mesh refinement (as opposed to block-structured adaptivity, which has been studied previously) in the context of Vlasov-Poisson, as well as in its application of DPG to the Vlasov-Poisson system. We also discuss extensive additions to the Camellia library in support of both the present formulation as well as extensions to higher dimensions, Maxwell equations, and space-time formulations.

More Details

Air separation and N2 purification with Ba0.15Sr0.85FeO3-δ via a two-step thermochemical process

Solar Energy

Bush, Hagan E.; Kury, Matthew W.; Berquist, Zachary; Rivas, Tania; Finale, Madeline; Albrecht, Kevin J.; Ambrosini, Andrea A.

Thermochemical air separation to produce high-purity N2 was demonstrated in a vertical tube reactor via a two-step reduction–oxidation cycle with an A-site substituted perovskite Ba0.15Sr0.85FeO3–δ (BSF1585). BSF1585 particles were synthesized and characterized in terms of their chemical, morphological, and thermophysical properties. A thermodynamic cycle model and sensitivity analysis using computational heat and mass transfer models of the reactor were used to select the system operating parameters for a concentrating solar thermal-driven process. Thermal reduction up to 800 °C in air and temperature-swing air separation from 800 °C to minimum temperatures between 400 and 600 °C were performed in the reactor containing a 35 g packed bed of BSF1585. The reactor was characterized for dispersion, and air separation was characterized via mass spectrometry. Gas measurements indicated that the reactor produced N2 with O2 impurity concentrations as low as 0.02 % for > 30 min of operation. A parametric study of air flow rates suggested that differences in observed and thermodynamically predicted O2 impurities were due to imperfect gas transport in the bed. Temperature swing reduction/oxidation cycling experiments between 800 and 400 °C in air were conducted with no statistically significant degradation in N2 purity over 50 cycles.

More Details

Andreev reflection of quantum Hall states through a quantum point contact

Physical Review B

Cuozzo, Joseph J.; Hatefipour, Mehdi; Rossi, Enrico; Shabani, Javad

We investigate the interplay between the quantum Hall (QH) effect and superconductivity in InAs surface quantum well (SQW)/NbTiN heterostructures using a quantum point contact (QPC). We use QPC to control the proximity of the edge states to the superconductor. By measuring the upstream and downstream resistances of the device, we investigate the efficiency of Andreev conversion at the InAs/NbTiN interface. Our experimental data is analyzed using the Landauer-Büttiker formalism, generalized to allow for Andreev reflection processes. We show that by varying the voltage of the QPC, VQPC, the average Andreev reflection, A, at the QH-SC interface can be tuned from 50% to ∼10%. The evolution of A with VQPC extracted from the measurements exhibits plateaus separated by regions for which A varies continuously with VQPC. The presence of plateaus suggests that for some ranges of VQPC the QPC might be pinching off almost completely from the QH-SC interface some of the edge modes. Our work shows an experimental setup to control and advance the understanding of the complex interplay between superconductivity and QH effect in two-dimensional gas systems.

More Details

Transducer Resolution Effect on Pressure Fluctuations Beneath Hypersonic Turbulent Boundary Layers

AIAA Journal

Huang, Junji; Duan, Lian; Casper, Katya M.; Wagnild, Ross M.; Bitter, Neal P.

The size of a pressure transducer is known to affect the accuracy of measurements of wall-pressure fluctuations beneath a turbulent boundary layer because of spatial averaging over the sensing area of the transducer. In this paper, the effect of finite transducer size is investigated by applying spatial averaging or wavenumber filters to a database of hypersonic wall pressure generated from a direct numerical simulation (DNS) that simulates the turbulent portion of the boundary layer over a sharp 7° half-angle cone at nominally Mach 8. Here, a good comparison between the DNS and the experiment in the Sandia Hypersonic Wind Tunnel at Mach 8 is achieved after spatial averaging is applied to the DNS data over an area similar to the sensing area of the transducer. The study shows that a finite sensor size similar to that of the PCB132 transducer can cause significant attenuation in the root-mean-square and power spectral density (PSD) of wall-pressure fluctuations, and the attenuation effect is identical between cone and flat plate configurations at the same friction Reynolds number. The Corcos theory is found to successfully compensate for the attenuated high-frequency components of the wall-pressure PSD.

More Details

Fabrication of thin diamond membranes by Ne+ implantation

Giant

Basso, Luca B.; Titze, Michael T.; Henshaw, Jacob D.; Kehayias, Pauli M.; Cong, Rong; Saleh Ziabari, Maziar S.; Lu, Tzu-Ming L.; Lilly, Michael L.; Mounce, Andrew M.

Color centers in diamond are one of the most promising tools for quantum information science. Of particular interest is the use of single-crystal diamond membranes with nanoscale-thickness as hosts for color centers. Indeed, such structures guarantee a better integration with a variety of other quantum materials or devices, which can aid the development of diamond-based quantum technologies, from nanophotonics to quantum sensing. A common approach for membrane production is what is known as “smart-cut”, a process where membranes are exfoliated from a diamond substrate after the creation of a thin sub-surface amorphous carbon layer by He+ implantation. Due to the high ion fluence required, this process can be time-consuming. In this work, we demonstrated the production of thin diamond membranes by neon implantation of diamond substrates. With the target of obtaining membranes of ~200 nm thickness and finding the critical damage threshold, we implanted different diamonds with 300 keV Ne+ ions at different fluences. We characterized the structural properties of the implanted diamonds and the resulting membranes through SEM, Raman spectroscopy, and photoluminescence spectroscopy. We also found that a SRIM model based on a two-layer diamond/sp2 -carbon target better describes ion implantation, allowing us to estimate the diamond critical damage threshold for Ne+ implantation. Compared to He+ smart-cut, the use of a heavier ion like Ne+ results in a ten-fold decrease in the ion fluence required to obtain diamond membranes and allows to obtain shallower smart-cuts, i.e. thinner membranes, at the same ion energy.

More Details

Extraction of the electron excess temperature in terahertz quantum cascade lasers from laser characteristics

Nanophotonics (Online)

Lander Gower, Nathalie; Levy, Shiran; Piperno, Silvia; Addamane, Sadhvikas J.; Reno, John L.; Albo, Asaf

We propose a method to extract the upper laser level’s (ULL’s) excess electronic temperature from the analysis of the maximum light output power (Pmax) and current dynamic range ΔJd = (JmaxJth) of terahertz quantum cascade lasers (THz QCLs). We validated this method, both through simulation and experiment, by applying it on THz QCLs supporting a clean three-level system. Detailed knowledge of electronic excess temperatures is of utmost importance in order to achieve high temperature performance of THz QCLs. Our method is simple and can be easily implemented, meaning an extraction of the excess electron temperature can be achieved without intensive experimental effort. This knowledge should pave the way toward improvement of the temperature performance of THz QCLs beyond the state-of-the-art.

More Details

Doping engineering: Next step toward room temperature performance of terahertz quantum cascade lasers

Journal of Vacuum Science and Technology B

Lander Gower, Nathalie; Levy, Shiran; Piperno, Silvia; Addamane, Sadhvikas J.; Reno, John L.; Albo, Asaf

We hereby offer a comprehensive analysis of various factors that could potentially enable terahertz quantum cascade lasers (THz QCLs) to achieve room temperature performance. We thoroughly examine and integrate the latest findings from recent studies in the field. Our work goes beyond a mere analysis; it represents a nuanced and comprehensive exploration of the intricate factors influencing the performance of THz QCLs. Through a comprehensive and holistic approach, we propose novel insights that significantly contribute to advancing strategies for improving the temperature performance of THz QCLs. This all-encompassing perspective allows us not only to present a synthesis of existing knowledge but also to offer a fresh and nuanced strategy to improve the temperature performance of THz QCLs. We draw new conclusions from prior works, demonstrating that the key to enhancing THz QCL temperature performance involves not only optimizing interface quality but also strategically managing doping density, its spatial distribution, and profile. This is based on our results from different structures, such as two experimentally demonstrated devices: the spit-well resonant-phonon and the two-well injector direct-phonon schemes for THz QCLs, which allow efficient isolation of the laser levels from excited and continuum states. In these schemes, the doping profile has a setback that lessens the overlap of the doped region with the active laser states. Our work stands as a valuable resource for researchers seeking to gain a deeper understanding of the evolving landscape of THz technology. Furthermore, we present a novel strategy for future endeavors, providing an enhanced framework for continued exploration in this dynamic field. This strategy should pave the way to potentially reach higher temperatures than the latest records reached for Tmax of THz QCLs.

More Details

A Formalization of Core Why3 in Coq

Proceedings of the ACM on Programming Languages

Cohen, Joshua M.; Johnson-Freyd, Philip A.

Intermediate verification languages like Why3 and Boogie have made it much easier to build program verifiers, transforming the process into a logic compilation problem rather than a proof automation one. Why3 in particular implements a rich logic for program specification with polymorphism, algebraic data types, recursive functions and predicates, and inductive predicates; it translates this logic to over a dozen solvers and proof assistants. Accordingly, it serves as a backend for many tools, including Frama-C, EasyCrypt, and GNATProve for Ada SPARK. But how can we be sure that these tools are correct? The alternate foundational approach, taken by tools like VST and CakeML, provides strong guarantees by implementing the entire toolchain in a proof assistant, but these tools are harder to build and cannot directly take advantage of SMT solver automation. As a first step toward enabling automated tools with similar foundational guarantees, we give a formal semantics in Coq for the logic fragment of Why3. We show that our semantics are useful by giving a correct-by-construction natural deduction proof system for this logic, using this proof system to verify parts of Why3's standard library, and proving sound two of Why3's transformations used to convert terms and formulas into the simpler logics supported by the backend solvers.

More Details

Nuclear magnetic resonance and molecular simulation study of H2 and CH4 adsorption onto shale and sandstone for hydrogen geological storage

International Journal of Hydrogen Energy

Ho, Tuan A.; Dasgupta, Nabankur; Choudhary, Aditya; Wang, Yifeng

Understanding pure H2 and H2/CH4 adsorption and diffusion in earth materials is one vital step toward a successful and safe H2 storage in depleted gas reservoirs. Despite recent research efforts such understanding is far from complete. In this work we first use Nuclear Magnetic Resonance (NMR) experiments to study the NMR response of injected H2 into Duvernay shale and Berea sandstone samples, representing materials in confining and storage zones. Then we use molecular simulations to investigate H2/CH4 competitive adsorption and diffusion in kerogen, a common component of shale. Our results indicate that in shale there are two H2 populations, i.e., free H2 and adsorbed H2, that yield very distinct NMR responses. However, only free gas presents in sandstone that yields a H2 NMR response similar to that of bulk H2. About 10 % of injected H2 can be lost due to adsorption/desorption hysteresis in shale, and no H2 loss (no hysteresis) is observed in sandstone. Our molecular simulation results support our NMR results that there are two H2 populations in nanoporous materials (kerogen). The simulation results also indicate that CH4 outcompetes H2 in adsorption onto kerogen, due to stronger CH4-kerogen interactions than H2-kerogen interactions. Nevertheless, in a depleted gas reservoir with low CH4 gas pressure, about ∼30 % of residual CH4 can be desorbed upon H2 injection. The simulation results also predict that H2 diffusion in porous kerogen is about one order of magnitude higher than that of CH4 and CO2. This work provides an understanding of H2/CH4 behaviors in deleted gas reservoirs upon H2 injection and predictions of H2 loss and CH4 desorption in H2 storage.

More Details

Effects of Proton Irradiation on GaN Vacuum Electron Nanodiodes

IEEE Transactions on Electron Devices

Sapkota, Keshab R.; Vizkelethy, Gyorgy V.; Burns, George B.; Wang, George T.

Gallium nitride (GaN)-based nanoscale vacuum electron devices, which offer advantages of both traditional vacuum tube operation and modern solid-state technology, are attractive for radiation-hard applications due to the inherent radiation hardness of vacuum electron devices and the high radiation tolerance of GaN. Here, we investigate the radiation hardness of top-down fabricated n-GaN nanoscale vacuum electron diodes (NVEDs) irradiated with 2.5-MeV protons (p) at various doses. We observe a slight decrease in forward current and a slight increase in reverse leakage current as a function of cumulative protons fluence due to a dopant compensation effect. The NVEDs overall show excellent radiation hardness with no major change in electrical characteristics up to a cumulative fluence of 5E14 p/cm2, which is significantly higher than the existing state-of-the-art radiation-hardened devices to our knowledge. The results show promise for a new class of GaN-based nanoscale vacuum electron devices for use in harsh radiation environments and space applications.

More Details

Assessing the release, transport, and retention of radioactive aerosols from hypothetical breaches in spent fuel storage canisters

Frontiers in Energy Research

Chatzidakis, Stylianos; Laros, James H.; Durbin, S.G.; Montgomery, Rose

Interim dry storage of spent nuclear fuel involves storing the fuel in welded stainless-steel canisters. Under certain conditions, the canisters could be subjected to environments that may promote stress corrosion cracking leading to a risk of breach and release of aerosol-sized particulate from the interior of the canister to the external environment through the crack. Research is currently under way by several laboratories to better understand the formation and propagation of stress corrosion cracks, however little work has been done to quantitatively assess the potential aerosol release. The purpose of the present work is to introduce a reliable generic numerical model for prediction of aerosol transport, deposition, and plugging in leak paths similar to stress corrosion cracks, while accounting for potential plugging from particle deposition. The model is dynamic (changing leak path geometry due to plugging) and it relies on the numerical solution of the aerosol transport equation in one dimension using finite differences. The model’s capabilities were also incorporated into a Graphical User Interface (GUI) that was developed to enhance user accessibility. Model validation efforts presented in this paper compare the model’s predictions with recent experimental data from Sandia National Laboratories (SNL) and results available in literature. We expect this model to improve the accuracy of consequence assessments and reduce the uncertainty of radiological consequence estimations in the remote event of a through-wall breach in dry cask storage systems.

More Details

On the Harmonic Balance Method Augmented with Nonsmooth Basis Functions for Contact/Impact Problems

Conference Proceedings of the Society for Experimental Mechanics Series

Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar

In this work, we evaluate the usefulness of nonsmooth basis functions for representing the periodic response of a nonlinear system subject to contact/impact behavior. As with sine and cosine basis functions for classical Fourier series, which have C∞ smoothness, nonsmooth counterparts with C0 smoothness are defined to develop a nonsmooth functional representation of the solution. Some properties of these basis functions are outlined, such as periodicity, derivatives, and orthogonality, which are useful for functional series applied via the Galerkin method. Least-squares fits of the classical Fourier series and nonsmooth basis functions are presented and compared using goodness-of-fit metrics for time histories from vibro-impact systems with varying contact stiffnesses. This formulation has the potential to significantly reduce the computational cost of harmonic balance solvers for nonsmooth dynamical systems. Rather than requiring many harmonics to capture a system response using classical, smooth Fourier terms, the frequency domain discretization could be captured by a combination of a finite Fourier series supplemented with nonsmooth basis functions to improve convergence of the solution for contact-impact problems.

More Details

Understanding the interplay between pilot fuel mixing and auto-ignition chemistry in hydrogen-enriched environment

Proceedings of the Combustion Institute

Lee, Taesong; Rajasegar, Rajavasanth R.; Srna, Ales S.

The diesel-piloted dual-fuel compression ignition combustion strategy is well-suited to accelerate the decarbonization of transportation by adopting hydrogen as a renewable energy carrier into the existing internal combustion engine with minimal engine modifications. Despite the simplicity of engine modification, many questions remain unanswered regarding the optimal pilot injection strategy for reliable ignition with minimum pilot fuel consumption. The present study uses a single-cylinder heavy-duty optical engine to explore the phenomenology and underlying mechanisms governing the pilot fuel ignition and the subsequent combustion of a premixed hydrogen-air charge. The engine is operated in a dual-fuel mode with hydrogen premixed into the engine intake charge with a direct pilot injection of n-heptane as a diesel pilot fuel surrogate. Optical diagnostics used to visualize in-cylinder combustion phenomena include high-speed IR imaging of the pilot fuel spray evolution as well as high-speed HCHO* and OH* chemiluminescence as indicators of low-temperature and high-temperature heat release, respectively. Three pilot injection strategies are compared to explore the effects of pilot fuel mass, injection pressure, and injection duration on the probability and repeatability of successful ignition. The thermodynamic and imaging data analysis supported by zero-dimensional chemical kinetics simulations revealed a complex interplay between the physical and chemical processes governing the pilot fuel ignition process in a hydrogen containing charge. Hydrogen strongly inhibits the ignition of pilot fuel mixtures and therefore requires longer injection duration to create zones with sufficiently high pilot fuel concentration for successful ignition. Results show that ignition typically tends to rely on stochastic pockets with high pilot fuel concentration, which results in poor repeatability of combustion and frequent misfiring. This work has improved the understanding on how the unique chemical properties of hydrogen pose a challenge for maximization of hydrogen's energy share in hydrogen dual-fuel engines and highlights a potential mitigation pathway.

More Details

Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks

Combustion Science and Technology

Armstrong, Elizabeth A.; Hansen, Michael A.; Knaus, Robert C.; Trask, Nathaniel A.; Hewson, John C.; Sutherland, James C.

Tabulated chemistry models are widely used to simulate large-scale turbulent fires in applications including energy generation and fire safety. Tabulation via piecewise Cartesian interpolation suffers from the curse-of-dimensionality, leading to a prohibitive exponential growth in parameters and memory usage as more dimensions are considered. Artificial neural networks (ANNs) have attracted attention for constructing surrogates for chemistry models due to their ability to perform high-dimensional approximation. However, due to well-known pathologies regarding the realization of suboptimal local minima during training, in practice they do not converge and provide unreliable accuracy. Partition of unity networks (POUnets) are a recently introduced family of ANNs which preserve notions of convergence while performing high-dimensional approximation, discovering a mesh-free partition of space which may be used to perform optimal polynomial approximation. We assess their performance with respect to accuracy and model complexity in reconstructing unstructured flamelet data representative of nonadiabatic pool fire models. Our results show that POUnets can provide the desirable accuracy of classical spline-based interpolants with the low memory footprint of traditional ANNs while converging faster to significantly lower errors than ANNs. For example, we observe POUnets obtaining target accuracies in two dimensions with 40 to 50 times less memory and roughly double the compression in three dimensions. We also address the practical matter of efficiently training accurate POUnets by studying convergence over key hyperparameters, the impact of partition/basis formulation, and the sensitivity to initialization.

More Details

Nonlinear Dynamics, Continuation, and Stability Analysis of a Shaft-Bearing Assembly

Conference Proceedings of the Society for Experimental Mechanics Series

Saunders, Brian E.; Kuether, Robert J.; Vasconcellos, Rui M.G.; Abdelkefi, Abdessattar

In this work, the frequency response of a simplified shaft-bearing assembly is studied using numerical continuation. Roller-bearing clearances give rise to contact behavior in the system, and past research has focused on the nonlinear normal modes of the system and its response to shock-type loads. A harmonic balance method (HBM) solver is applied instead of a time integration solver, and numerical continuation is used to map out the system’s solution branches in response to a harmonic excitation. Stability analysis is used to understand the bifurcation behavior and possibly identify numerical or system-inherent anomalies seen in past research. Continuation is also performed with respect to the forcing magnitude, resulting in what are known as S-curves, in an effort to detect isolated solution branches in the system response.

More Details

Response Limiting in Shaker Shocks

AIAA SciTech Forum and Exposition, 2024

Babuska, Vit B.; Cap, Jerome S.

The primary goal of any laboratory test is to expose the unit-under-test to conservative realistic representations of a field environment. Satisfying this objective is not always straightforward due to laboratory equipment constraints. For vibration and shock tests performed on shakers over-testing and unrealistic failures can result because the control is a base acceleration and mechanical shakers have nearly infinite impedance. Force limiting and response limiting are relatively standard practices to reduce over-test risks in random-vibration testing. Shaker controller software generally has response limiting as a built-in capability and it is done without much user intervention since vibration control is a closed loop process. Limiting in shaker shocks is done for the same reasons, but because the duration of a shock is only a few milliseconds, limiting is a pre-planned user in the loop process. Shaker shock response limiting has been used for at least 30 years at Sandia National Laboratories, but it seems to be little known or used in industry. This objective of this paper is to re-introduce response limiting for shaker shocks to the aerospace community. The process is demonstrated on the BARBECUE testbed.

More Details

Model Development for Thermal-Hydrology Simulations of a Full-Scale Heater Experiment in Opalinus Clay

Nuclear Technology

Hadgu, Teklu H.; Matteo, Edward N.; Dewers, Thomas D.

Disposal of commercial spent nuclear fuel in a geologic repository is studied. In situ heater experiments in underground research laboratories provide a realistic representation of subsurface behavior under disposal conditions. This study describes process model development and modeling analysis for a full-scale heater experiment in opalinus clay host rock. The results of thermal-hydrology simulation, solving coupled nonisothermal multiphase flow, and comparison with experimental data are presented. The modeling results closely match the experimental data.

More Details

Spatiotemporal Analyses of News Media Coverage on “Nuclear Waste”: A Natural Language Processing Approach

Nuclear Technology

Sweitzer, Matthew; Gunda, Thushara G.

The siting of nuclear waste is a process that requires consideration of concerns of the public. This report demonstrates the significant potential for natural language processing techniques to gain insights into public narratives around “nuclear waste.” Specifically, the report highlights that the general discourse regarding “nuclear waste” within the news media has fluctuated in prevalence compared to “nuclear” topics broadly over recent years, with commonly mentioned entities reflecting a limited variety of geographies and stakeholders. General sentiments within the “nuclear waste” articles appear to use neutral language, suggesting that a scientific or “facts-only” framing of “waste”-related issues dominates coverage; however, the exact nuances should be further evaluated. The implications of a number of these insights about how nuclear waste is framed in traditional media (e.g., regarding emerging technologies, historical events, and specific organizations) are discussed. This report lays the groundwork for larger, more systematic research using, for example, transformer-based techniques and covariance analysis to better understand relationships among “nuclear waste” and other nuclear topics, sentiments of specific entities, and patterns across space and time (including in a particular region). By identifying priorities and knowledge needs, these data-driven methods can complement and inform engagement strategies that promote dialogue and mutual learning regarding nuclear waste.

More Details
Results 251–300 of 96,771
Results 251–300 of 96,771