Publications

5 Results

Search results

Jump to search filters

Rapid subsurface analysis of frequency-domain thermoreflectance images with K-means clustering

Journal of Applied Physics

Jarzembski, Amun J.; Piontkowski, Zachary T.; Hodges, Wyatt L.; Bahr, Matthew; McDonald, Anthony E.; Delmas, William; Pickrell, Gregory P.; Yates, Luke Y.

K-means clustering analysis is applied to frequency-domain thermoreflectance (FDTR) hyperspectral image data to rapidly screen the spatial distribution of thermophysical properties at material interfaces. Performing FDTR while raster scanning a sample consisting of 8.6 μ m of doped-silicon (Si) bonded to a doped-Si substrate identifies spatial variation in the subsurface bond quality. Routine thermal analysis at select pixels quantifies this variation in bond quality and allows assignment of bonded, partially bonded, and unbonded regions. Performing this same routine thermal analysis across the entire map, however, becomes too computationally demanding for rapid screening of bond quality. To address this, K-means clustering was used to reduce the dimensionality of the dataset from more than 20 000 pixel spectra to just K = 3 component spectra. The three component spectra were then used to express every pixel in the image through a least-squares minimized linear combination providing continuous interpolation between the components across spatially varying features, e.g., bonded to unbonded transition regions. Fitting the component spectra to the thermal model, thermal properties for each K cluster are extracted and then distributed according to the weighting established by the regressed linear combination. Thermophysical property maps are then constructed and capture significant variation in bond quality over 25 μ m length scales. The use of K-means clustering to achieve these thermal property maps results in a 74-fold speed improvement over explicit fitting of every pixel.

More Details

Inversion for Thermal Properties with Frequency Domain Thermoreflectance

ACS Applied Materials and Interfaces

Treweek, Benjamin T.; Laros, James H.; Hodges, Wyatt L.; Jarzembski, Amun J.; Bahr, Matthew; Jordan, Matthew J.; McDonald, Anthony E.; Yates, Luke Y.; Walsh, Timothy W.; Pickrell, Gregory P.

3D integration of multiple microelectronic devices improves size, weight, and power while increasing the number of interconnections between components. One integration method involves the use of metal bump bonds to connect devices and components on a common interposer platform. Significant variations in the coefficient of thermal expansion in such systems lead to stresses that can cause thermomechanical and electrical failures. More advanced characterization and failure analysis techniques are necessary to assess the bond quality between components. Frequency domain thermoreflectance (FDTR) is a nondestructive, noncontact testing method used to determine thermal properties in a sample by fitting the phase lag between an applied heat flux and the surface temperature response. The typical use of FDTR data involves fitting for thermal properties in geometries with a high degree of symmetry. In this work, finite element method simulations are performed using high performance computing codes to facilitate the modeling of samples with arbitrary geometric complexity. A gradient-based optimization technique is also presented to determine unknown thermal properties in a discretized domain. Using experimental FDTR data from a GaN-diamond sample, thermal conductivity is then determined in an unknown layer to provide a spatial map of bond quality at various points in the sample.

More Details

Substrate-Independent Technique of III-V Heterogeneous Integration of Focal Plane Arrays and Lasers

2023 Conference on Lasers and Electro-Optics, CLEO 2023

Wood, Michael G.; Bahr, Matthew; Gutierrez, Jordan E.; Anderson, Evan M.; Finnegan, Patrick S.; Weatherred, Scott E.; Martinez, William M.; Laros, James H.; Reyna, Robert; Arterburn, Shawn C.; Friedmann, Thomas A.; Hawkins, Samuel D.; Patel, Victor J.; Hendrickson, Alex; Klem, John F.; Long, Christopher M.; Olesberg, Jonathon T.; Shank, Joshua S.; Chumney, Daniel R.; Looker, Quinn M.

We report on a two-step technique for post-bond III-V substrate removal involving precision mechanical milling and selective chemical etching. We show results on GaAs, GaSb, InP, and InAs substrates and from mm-scale chips to wafers.

More Details

Substrate-Independent Technique of III-V Heterogeneous Integration of Focal Plane Arrays and Lasers

CLEO: Science and Innovations, CLEO:S and I 2023

Wood, Michael G.; Bahr, Matthew; Serkland, Darwin K.; Gutierrez, Jordan E.; Anderson, Evan M.; Finnegan, Patrick S.; Weatherred, Scott E.; Martinez, William M.; Laros, James H.; Reyna, Robert; Arterburn, Shawn C.; Friedmann, Thomas A.; Hawkins, Samuel D.; Patel, Victor J.; Hendrickson, Alex; Klem, John F.; Long, Christopher M.; Olesberg, Jonathon T.; Shank, Joshua S.; Chumney, Daniel R.; Looker, Quinn M.

We report on a two-step technique for post-bond III-V substrate removal involving precision mechanical milling and selective chemical etching. We show results on GaAs, GaSb, InP, and InAs substrates and from mm-scale chips to wafers.

More Details
5 Results
5 Results