This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.16 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Pultrusion manufacturing of fiber reinforced polymers has been shown to yield some of the highest mechanical properties for unidirectional composites, having a high degree of fiber alignment with consistent performance. Pultrusions offer a low-cost manufacturing approach for producing unidirectional composites with a constant cross-section and are used in many applications, including spar caps of wind turbine blades. However, as an intermediate processing step for wind blades, the additional cost of manufacturing pultrusions must be accompanied by sufficient increases in mechanical performance and system benefits. Wind turbine blades are manufactured using vacuum-assisted resin transfer molding with infused unidirectional fiberglass or carbon pultrusions for the spar cap. Infused fiberglass composites are among the most cost-effective structural materials available and replacing this material in the cost-driven wind industry has proven challenging, where infused fiberglass spar caps are still the predominant material system in use. To evaluate alternative material systems in a pultruded composite form, it is necessary to understand the costs for this additional manufacturing step which are shown to add 33%–55% on top of the material costs. A pultrusion cost model has been developed and used to quantify cost sensitivities to various processing parameters. The mechanical performance for pultruded composites is improved versus resin-infusion manufacturing with a 17% increase in design strength at a constant fiber volume fraction, but also enables higher achievable fiber volume fractions. The cost-specific mechanical performance is compared as a function of processing parameters for pultruded composites to identify the opportunities for alternative material and manufacturing approaches for wind turbine spar caps. Finally, four materials are compared in a representative wind turbine blade model to assess the performance of pultruded carbon fiber systems and pultruded fiberglass relative to infused fiberglass, where the pultruded systems produce lower weight blades with various cost distinctions.
The objective of the crystalline disposal work packages is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.
Combinatorial research, the incorporation of multiple domains in a unified research agenda, is a strong contributor to the growing corpus of scientific knowledge and technological advancements worldwide. In 2019, a study team at Sandia National Laboratories (Sandia, the Labs) used a systems approach to understand if and how combinatorial research agendas were playing out at Sandia, one of America’s premiere national security research venues. The study team used the data collection effort described in this report to ground the discussion of the broad social environment and particular organizational environments within which combinatorial research agendas are developed, as described in the full study. The team interviewed twenty-five staff members engaged in combinatorial research at Sandia in New Mexico and California during the months of June – September 2019. Analysis of this corpus of ethnographic data, combined with knowledge drawn from relevant literature, concluded that there is an individual type who would be most likely to engage in combinatoric research, described by both demographic and psychographic components. This type demonstrates both intellectual depth and the curiosity which leads to breadth. The analysis also showed that Sandia as an organization and as perceived by the respondents, set up tension for the combinatorial researcher. While Sandia was generally agnostic towards combinatorial research, that agnostic posture depended on whether the researcher was able to fulfill all her customer obligations – obligations that are structured primarily in transactional relationships with customers with relatively short time horizons. This report concludes with suggestions for additional research in the ethnographic domain.
Marvin, Jessica; Nicholson, James; Turek, Cedar; Iwasa, Erina; Pangrekar, Nilay; Fowler, Whitney C.; Van Ginhoven, Renee M.; Monson, Todd
Barium titanate (BTO) is a widely researched ferroelectric useful for energy storage. While BTO’s surface chemistry is commonly studied using density functional theory, little has been published on the TiO2 surface. Here, we determined that BTO’s surface response can be decoupled from the ferroelectric response by using a pre-optimized ferroelectric slab and allowing only the top three atomic z-layers to respond to ligand binding. Multiple favorable binding modes were identified for hydrogen, hydroxyl, water, and tert-butyl phosphonic acid on BTO’s TiO2 surface. Of these ligands, tBuPA dominates surface binding with binding energies as low as -2.61 eV for its nine configurations.
Strozi, Renato B.; Witman, Matthew D.; Stavila, Vitalie; Cizek, Jakub; Sakaki, Kouji; Kim, Hyunjeong; Melikhova, Oksana; Perriere, Loic; Machida, Akihiko; Nakahira, Yuki; Zepon, Guilherme; Botta, Walter J.; Zlotea, Claudia
The hydrogen sorption properties of single-phase bcc (TiVNb)100-xCrx alloys (x = 0-35) are reported. All alloys absorb hydrogen quickly at 25 °C, forming fcc hydrides with storage capacity depending on the Cr content. A thermodynamic destabilization of the fcc hydride is observed with increasing Cr concentration, which agrees well with previous compositional machine learning models for metal hydride thermodynamics. The steric effect or repulsive interactions between Cr-H might be responsible for this behavior. The cycling performances of the TiVNbCr alloy show an initial decrease in capacity, which cannot be explained by a structural change. Pair distribution function analysis of the total X-ray scattering on the first and last cycled hydrides demonstrated an average random fcc structure without lattice distortion at short-range order. If the as-cast alloy contains a very low density of defects, the first hydrogen absorption introduces dislocations and vacancies that cumulate into small vacancy clusters, as revealed by positron annihilation spectroscopy. Finally, the main reason for the capacity drop seems to be due to dislocations formed during cycling, while the presence of vacancy clusters might be related to the lattice relaxation. Having identified the major contribution to the capacity loss, compositional modifications to the TiVNbCr system can now be explored that minimize defect formation and maximize material cycling performance.
Immune checkpoint immunotherapy (ICI) can re-activate immune reactions against neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI, the influence of the subcellular localizations of the neoantigens remains unclear. Here, we demonstrate in both a mouse melanoma model and human clinical datasets of 1,722 ICI-treated patients that a high proportion of membrane-localized neoantigens, particularly at the plasma membrane, correlate with responsiveness to ICI therapy and improved overall survival across multiple cancer types. We further show that combining membrane localization and TMB analyses can enhance the predictability of cancer patient response to ICI. Our results may have important implications for establishing future clinical guidelines to direct the choice of treatment toward ICI.
Recent advances in the growth of aluminum scandium nitride films on silicon suggest that this material platform could be applied for quantum electromechanical applications. Here, we model, fabricate, and characterize microwave frequency silicon phononic delay lines with transducers formed in an adjacent aluminum scandium nitride layer to evaluate aluminum scandium nitride films, at 32% scandium, on silicon interdigital transducers for piezoelectric transduction into suspended silicon membranes. We achieve an electromechanical coupling coefficient of 2.7% for the extensional symmetric-like Lamb mode supported in the suspended material stack and show how this coupling coefficient could be increased to at least 8.5%, which would further boost transduction efficiency and reduce the device footprint. The one-sided transduction efficiency, which quantifies the efficiency at which the source of microwave photons is converted to microwave phonons in the silicon membrane, is 10% at 5 GHz at room temperature and, as we discuss, there is a path to increase this toward near-unity efficiency based on a combination of modified device design and operation at cryogenic temperatures.
This FY2023 report is the second update to the Disposal Research (DR) Research and Development (R&D) 5-year plan for the Spent Fuel and Waste Science and Technology (SFWST) Campaign DR R&D activities. In the planning for FY2020 in the U.S. Department of Energy (DOE) NE-81 SFWST Campaign, the DOE requested development of a high-level summary plan for activities in the DR R&D program for the next five (5)-year period, with periodic updates to this summary plan. The DR R&D 5-year plan was provided to the DOE based initially on the FY2020 priorities and program structure (initial 2020 version of this 5-year plan) and provides a strategic summary guide to the work within the DR R&D technical areas (Control Accounts, CA), focusing on the highest priority technical thrusts. This 5-year plan is a living document (planned to be updated periodically) that provides review of SFWST R&D accomplishments (as seen on the 2021 revision of this 5-year plan), describes changes to technical R&D prioritization based on (a) progress in each technical area (including external technical understanding) with specific accomplishments and (b) any changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). Updates to this 5-year plan include the DR R&D adjustments to high-priority knowledge gaps to be investigated in the near-term, as well as the updated longer-term DR R&D directions for the program activities. This plan fulfills the Milestone M2SF23SN010304083 in DR Work Package (WP) SF-23SN01030408 (GDSA - Framework Development – SNL).
Senanayake, Hasini S.; Wimalasiri, Pubudu N.; Godahewa, Sahan M.; Thompson, Ward H.; Greathouse, Jeffery A.
Here, we present a classical interatomic force field, silica-DDEC, to describe the interactions of amorphous and crystalline silica surfaces, parametrized using density functional theory-based charges. Charge schemes for silica surfaces were developed using the density-derived electrostatic and chemical (DDEC) method, which reproduces atomic charges of the periodic models as well as the electrostatic potential away from the atom sites. Lennard–Jones parameters were determined by requiring the correct description of (i) the amorphous silica density, coordination defects, and local coordination geometry, relative to experimental measurements, and (ii) water-silica interatomic distances compared with ab initio results. Deprotonated surface silanol sites are also described within the model based on DDEC charges. The result is a general electronic structure-derived model for describing fully flexible amorphous and crystalline silica surfaces and interactions of liquids with silica surfaces of varying structure and protonation state.
This report summarizes the activities performed by Sandia National Laboratories in FY23 to identify and test coating materials for the prevention, mitigation, and/or repair of potential chloride-induced stress corrosion cracking in spent nuclear fuel dry storage canisters. This work continues efforts by Sandia National Laboratories that are summarized in previous reports from FY20 through FY22 on the same topic. In FY23, Sandia National Laboratories, in collaboration with five industry partners through a memorandum of understanding, evaluated the physical, mechanical, and corrosion-resistance properties of eight different coating systems. The evaluation included thermal and radiation environments relevant to various time periods of storage for spent nuclear fuel canisters. The coating systems include polymeric (polyetherketoneketone, modified polyimide/polyurea, modified phenolic resin, epoxy), organic/inorganic ceramic hybrids (silane-based polyurethane hybrid and a quasi-ceramic sol-gel polyurethane hybrid), and coatings utilizing a Zn-rich primer applied to stainless steel coupons. The results and implications of these tests are summarized in this report. These analyses will be used to identify the most effective coatings for potential use on spent nuclear fuel dry storage canisters and to identify specific needs for further optimization of coating technologies for application on spent nuclear fuel canisters.
Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF’s capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF’s surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
White, Zachary K.; Gott, Ryan P.; Bentz, Brian Z.; Xu, Kunning G.
Here we have observed the behavior of striations caused by ionization waves propagating in low-pressure helium DC discharges using the non-invasive laser-collision induced fluorescence (LCIF) diagnostic. To achieve this, we developed an analytic fit of collisional radiative model (CRM) predictions to interpret the LCIF data and recover quantitative two-dimensional spatial maps of the electron density, ne, and the ratios of LCIF emission states that can be correlated with Te with the use of accurate distribution functions at localized positions within striated helium discharges at 500 mTorr, 750 mTorr, and 1 Torr. To our knowledge, these are the first spatiotemporal, laser-based, experimental measurements of ne in DC striations. The ne and 447:588 ratio distributions align closely with striation theory. Constriction of the positive column appears to occur with decreased gas pressure, as shown by the radial ne distribution. We identify a transition from a slow ionization wave to a fast ionization wave between 750 mTorr and 1 Torr. These experiments validate our analytic fit of ne, allowing the implementation of an LCIF diagnostic in helium without the need to develop a CRM.
We present an experimental study on a terahertz quantum cascade laser (THz QCL) design that combines both two-well injector and direct-phonon scattering schemes, i.e., a so-called two-well injector direct-phonon design. As a result of the two-well injector direct-phonon scheme presented here, the lasers benefit from both a direct phonon scattering scheme for the lower laser level depopulation and a setback for the doping profile that reduces the overlap of the doped region with active laser states. Additionally, our design also has efficient isolation of the active laser levels from excited and continuum states as indicated by negative differential resistance behavior all the way up to room temperature. This scheme serves as a good platform for improving the temperature performance of THz QCLs as indicated by the encouraging temperature performance results of the device with a relatively high doping level of 7.56 × 1010 cm−2 and Tmax ∼ 167 K. With the right optimization of the molecular beam epitaxy growth and interface quality, the injection coupling strength, and the doping density and its profile, the device could potentially reach higher temperatures than the latest records reached for the maximum operating temperature (Tmax) of THz QCLs.
Short-ranged and line-gapped non-Hermitian Hamiltonians have strong topological invariants given by an index of an associated Fredholm operator. It is shown how these invariants can be accessed via the signature of a suitable spectral localizer. Here, this numerical technique is implemented in an example with relevance to the design of topological photonic systems, such as topological lasers.
Over the past few decades, inorganic nitride materials have grown in importance in part due to their potential as catalysts for the synthesis of NH3, a key ingredient in fertilizer and precursor to industrial chemicals. Of particular interest are the ternary (ABN) or higher-order nitrides with high metal-to-nitrogen ratios that show promise in enhancing NH3 synthesis reaction rates and yields via heterogeneous catalysis or chemical looping. Although metal nitrides are predicted to be numerous, the stability of nitrogen triple bonds found in N2, especially in comparison to the metal-nitrogen bonds, has considerably hindered synthetic efforts to produce complex nitride compounds. In this study, we present an exhaustive down-selection process to identify ternary nitrides for a promising chemical looping NH3 production mechanism. We also report on a facile and efficient two-step synthesis method that can produce well-characterized η-carbide Co3Mo3N/Fe3Mo3N or filled β-manganese Ni2Mo3N ternaries, as well as their associated quaternary, (Co,Fe)3Mo3N, (Fe,Ni)2Mo3N, and (Co,Ni)2Mo3N, solid solutions. To further explore the quaternary space, syntheses of (Co,Ni)3Mo3N (Ni ≤ 10 mol %) and Co3(Mo,W)3N (W ≤ 10 mol %) were also investigated. The structures of the nitrides were characterized via X-ray powder diffraction. The morphology and compositions were characterized with scanning electron microscopy. The multitude of chemically unique, but structurally related, nitrides suggests that properties such as nitrogen activity may be tunable, making the materials of great interest for NH3 synthesis schemes.
Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) data collected from the Beaufort Sea, Alaska, using ~37.4 km of dark telecommunications fiber located at Oliktok Point, Alaska. Data were collected with a Silixa iDAS, using 10 m gauge length, 2 m spatial resolution, and 1000 Hz sample rate. Provided here are the DAS-recorded time series for the rapid refreeze event described in Baker & Abbott (2022) (see link below). This covers a date range of 2021-11-10 15:00 UTC to 2021-11-11 17:00 UTC. Data have been decimated to 100 Hz and 20 m (i.e., every 10th channel for 1831 channels, total), as used in Baker & Abbott (2022). Data have been extracted from raw format into 1-hour long .sac* files and organized into directories by channel number, spanning channels 100 to 18400. Time series units are nano-strainrate (nm/m/s). For distribution, data have been compressed into .zip files containing all time series files for 100 channels. *For information on the Seismic Analysis Code (SAC) file format: https://seiscode.iris.washington.edu/projects/sac
Early-bird communication is a communication/computation overlap technique that combines fine-grained communication with partitioned communication to improve application run-time. Communication is divided among the compute threads such that each individual thread can initiate transmission of its portion of the data as soon as it is complete rather than waiting for all of the threads. However, the benefit of early-bird communication depends on the completion timing of the individual threads. In this paper, we measure and evaluate the potential overlap, the idle time each thread experiences between finishing their computation and the final thread finishing. These measurements help us understand whether a given application could benefit from early-bird communication. We present our technique for gathering this data and evaluate data collected from three proxy applications: MiniFE, MiniMD, and MiniQMC. To characterize the behavior of these workloads, we study the thread timings at both a macro level, i.e., across all threads across all runs of an application, and a micro level, i.e., within a single process of a single run. We observe that these applications exhibit significantly different behavior. While MiniFE and MiniQMC appear to be well-suited for early-bird communication because of their wider thread distribution and more frequent laggard threads, the behavior of MiniMD may limit its ability to leverage early-bird communication.
Traditional point-to-point communication sends data only after the entirety of the data is available. This includes situations where multiple actors (e.g., threads) contribute to the send buffer. As a result, cases where the completion times of these actors are widely distributed may be lost opportunities for optimization because data ready to be sent is waiting to be transmitted. Fine-grained communication exposes these opportunities by allowing buffers to be divided into elements that can then be sent independently (see e.g., Partitioned Communication in Message Passing Interface v4.0). While some research has been directed at exploring the utility of such 'early-bird' transmission, the overall search space for finding the best performing actor completion timings and element counts is large. In this work, we present an abstract model of fine-grained communication based on the LogGP model and a complementary benchmark. We use the model to explore actor completion timing scenarios and identify trends in communication behavior based on factors such as overall message size and delay between actor completions. We evaluate the benchmarks on three systems utilizing distinct network technologies and show that: (i) smaller numbers of elements are able to exploit most of the benefit of early-bird communication, (ii) performance benefit will depend non-trivially on application behavior, and (iii) benefits are highly network-dependent.
The plastic deformation of metals is a dissipative process. Some fraction of the plastic work is converted to heat which, given the temperature dependent response of metals, produces a thermal-mechanical coupling. In various cases, for instance when the loading is dynamic, this interaction can impact the resulting response of a material and/or system. Thus, appropriately capturing the heat generation from plastic work is necessary for various solid mechanics analysis. Determination of the fraction of work converted to heat has been long studied. Recent developments have demonstrated that the fraction is not constant but depends on various state variables. Resolving these features requires combined modeling and experimental studies. To this end, 304L stainless steel – a poor thermal conductor – was recently subjected to such an investigation. Advanced modeling capabilities were deployed to assess novel thermomechanically coupled experiments. As a complement to that study, in the current work a similar investigation is performed on copper – a good thermal conductor – to assess performance on the opposite end of the spectrum. The current document discusses these modeling efforts.
UV photofragment spectroscopy and IR-UV double resonance methods are used to determine the structure and spectroscopic responses of a three-dimensional [2.2.2]-benzocryptand cage to the incorporation of a single K+ or Ba2+ imbedded inside it (labeled as K+-BzCrypt, Ba2+-BzCrypt). We studied the isolated ion-cryptand complex under cryo-cooled conditions, brought into the gas phase by nano-electrospray ionization. Incorporation of a phenyl ring in place of the central ethyl group in one of the three N-CH2-CH2-O-CH2-CH2-O-CH2-CH2-N chains provides a UV chromophore whose S0-S1 transition we probe. K+-BzCrypt and Ba2+-BzCrypt have their S0-S1 origin transitions at 35,925 and 36,446 cm-1, respectively, blue-shifted by 174 and 695 cm-1 from that of 1,2-dimethoxybenzene. These origins are used to excite a single conformation of each complex selectively and record their IR spectra using IR-UV dip spectroscopy. The alkyl CH stretch region (2800-3000 cm-1) is surprisingly sensitive to the presence and nature of the encapsulated ion. We carried out an exhaustive conformational search of cage conformations for K+-BzCrypt and Ba2+-BzCrypt, identifying two conformations (A and B) that lie below all others in energy. We extend our local mode anharmonic model of the CH stretch region to these strongly bound ion-cage complexes to predict conformation-specific alkyl CH stretch spectra, obtaining quantitative agreement with experiment for conformer A, the gas-phase global minimum. The large electrostatic effect of the charge on the O- and N-lone pairs affects the local mode frequencies of the CH2 groups adjacent to these atoms. The localized CH2 scissors modes are pushed up in frequency by the adjacent O/N-atoms so that their overtones have little effect on the alkyl CH stretch region. However, the localized CH2 wags are nearly degenerate and strongly coupled to one another, producing an array of delocalized wag normal modes, whose highest frequency members reach up above 1400 cm-1. As such, their overtones mix significantly with the CH stretch modes, most notably involving the CH2 symmetric stretch fundamentals of the central ethyl groups in the all-alkyl chains and the CH stretches adjacent to the N-atoms and antiperiplanar to the nitrogen lone pair.
Metamaterial resonators have become an efficient and versatile platform in the terahertz frequency range, finding applications in integrated optical devices, such as active modulators and detectors, and in fundamental research, e.g., ultrastrong light–matter investigations. Despite their growing use, characterization of modes supported by these subwavelength elements has proven to be challenging and it still relies on indirect observation of the collective far-field transmission/reflection properties of resonator arrays. Here, we present a broadband time-domain spectroscopic investigation of individual metamaterial resonators via a THz aperture scanning near-field microscope (a-SNOM). The time-domain a-SNOM allows the mapping and quantitative analysis of strongly confined modes supported by the resonators. In particular, a cross-polarized configuration presented here allows an investigation of weakly radiative modes. These results hold great potential to advance future metamaterial-based optoelectronic platforms for fundamental research in THz photonics.
Garcia, Valentina; Pidatala, Venkataramana; Barcelos, Carolina A.; Liu, Dupeng; Otoupal, Peter; Wendt, Oliver; Choudhary, Hemant; Sun, Ning; Eudes, Aymerick; Sundstrom, Eric R.; Scheller, Henrik V.; Putnam, Daniel H.; Mukhopadhyay, Aindrila; Gladden, John M.; Simmons, Blake A.; Rodriguez, Alberto
Building a stronger bioeconomy requires production capabilities that are largely generated through microbial genetic engineering. Plant feedstocks can additionally be genetically engineered to generate desirable feedstock traits and provide precursors for direct microbial conversion into desired products. The oleaginous yeast Rhodosporidium toruloides is a promising organism for this type of conversion as it can grow on a wide range of deconstructed biomass and consume a variety of carbon sources. Here, we leveraged R. toruloides native p-coumaric acid consumption pathway to accumulate protocatechuate (PCA) from 4-hydroxybenzoate (4HBA) released from a sorghum feedstock line genetically engineered to overproduce 4HBA. We did so by generating and evaluating an R. toruloides strain that accumulates PCA, RSΔ12623. We then show that at two scales a cholinium lysinate pretreatment with enzymatic saccharification successfully extracts 95% of the 4HBA from the engineered sorghum biomass while producing deconstructed lignin that can be more efficiently depolymerized in a subsequent thermochemical reaction. We also demonstrate that strain RSΔ12623 can convert more than 95% of 4HBA to PCA while consuming >95% of the glucose and >80% of the xylose present in sorghum hydrolysates. Finally, to evaluate the scalability of such fermentations, we conducted the conversion of 4HBA to PCA in a 2 L bioreactor under controlled conditions. This work demonstrates the potential of purposefully producing aromatic precursors in planta that can be liberated during biomass deconstruction for direct microbial conversion to desirable bioproducts.
In this paper, we highlight how computational properties of biological dendrites can be leveraged for neuromorphic applications. Specifically, we demonstrate analog silicon dendrites that support multiplication mediated by conductance-based input in an interception model inspired by the biological dragonfly. We also demonstrate spatiotemporal pattern recognition and direction selectivity using dendrites on the Loihi neuromorphic platform. These dendritic circuits can be assembled hierarchically as building blocks for classifying complex spatiotemporal patterns.
Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.
Abstract: Advantages of the 2.5D HI (Heterogeneous Integration) electronics packaging of the power electronics compared to PCB packaging will be presented. Current 2.5D packaging effort using TSV (Through Silicon Via) will be presented in terms of fabrication, microstructural analysis, reliability, and thermal simulation.
Dannemann Dugick, Fransiska K.; Bishop, Jordan W.; Martire, Leo; Iezzi, Alexandra M.; Assink, Jelle D.; Brissaud, Quentin; Arrowsmith, Stephen
This special section of the Bulletin of the Seismological Society of America provides a broad overview on recent advances to the understanding of the seismoacoustic wavefield through 19 articles. Leveraging multiphenomenology datasets is instrumental for the continued success of future planetary missions, nuclear test ban treaty verification, and natural hazard monitoring. Progress in our theoretical understanding of mechanical coupling, advancements in coupled-media wave modeling, and developments of efficient multitechnology inversion procedures are key to fully exploiting geophysical datasets on Earth and beyond. We begin by highlighting papers describing experimental setups and instrumentation, followed by characterization of natural and anthropogenic sources of interest, and ending in new open-access datasets. Finally, we conclude with an overview of challenges that remain as well as some potential directions for future investigation within the growing multidisciplinary field of seismoacoustics.
The table presented below suggests the basic information that should be covered in a facility NMAC Plan for an NMAC program that is designed for nuclear security. The topics are appropriate for and should be addressed by all facilities in their NMAC Plans. They are appropriate for NMAC Plans for nuclear power plants, research reactors, fuel manufacturing facilities, facilities that produce medical isotopes, and other facilities. The difference is in the intensity with which the various measures are applied and the thoroughness of the description of the application (i.e., the program requirements). The robustness of a facility NMAC program and the content of its NMAC Plan should be graded in accordance with the type of facility and the category of its nuclear material.
The growth of helium bubbles impacts structural integrity of materials in nuclear applications. Understanding helium bubble nucleation and growth mechanisms is critical for improved material applications and aging predictions. Systematic molecular dynamics simulations have been performed to study helium bubble nucleation and growth mechanisms in Fe70Ni11Cr19 stainless steels. First, helium cluster diffusivities are calculated at a variety of helium cluster sizes and temperatures for systems with and without dislocations. Second, the process of diffusion of helium atoms to join existing helium bubbles is not deterministic and is hence studied using ensemble simulations for systems with and without vacancies, interstitials, and dislocations. We find that bubble nucleation depends on diffusion of not only single helium atoms, but also small helium clusters. Defects such as vacancies and dislocations can significantly impact the diffusion kinetics due to the trapping effects. Vacancies always increase the time for helium atoms to join existing bubbles due to the short-range trapping effect. This promotes bubble nucleation as opposed to bubble growth. Interestingly, dislocations can create a long-range trapping effect that reduces the time for helium atoms to join existing bubbles. This can promote bubble growth within a certain region near dislocations.