Real-time time-dependent density functional theory (TDDFT) is presently the most accurate available method for computing electronic stopping powers from first principles. However, obtaining application-relevant results often involves either costly averages over multiple calculations or ad hoc selection of a representative ion trajectory. We consider a broadly applicable, quantitative metric for evaluating and optimizing trajectories in this context. This methodology enables rigorous analysis of the failure modes of various common trajectory choices in crystalline materials. Although randomly selecting trajectories is common practice in stopping power calculations in solids, we show that nearly 30% of random trajectories in an FCC aluminum crystal will not representatively sample the material over the time and length scales feasibly simulated with TDDFT, and unrepresentative choices incur errors of up to 60%. We also show that finite-size effects depend on ion trajectory via “ouroboros” effects beyond the prevailing plasmon-based interpretation, and we propose a cost-reducing scheme to obtain converged results even when expensive core-electron contributions preclude large supercells. This work helps to mitigate poorly controlled approximations in first-principles stopping power calculations, allowing 1–2 order of magnitude cost reductions for obtaining representatively averaged and converged results.
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical l-arabinose and d-xylose metabolism proceeding through d-arabitol and d-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that d-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative d-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of d-xylose to d-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative d-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative l-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
The frequency, severity, and extent of climate extremes in future will have an impact on human well-being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. The specific objectives of this study were to downscale climate data for US weather stations and analyze future trends in meteorological drought and temperature extremes over continental United States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future precipitation projections from three Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 8.5. Comparing historic observations with climate model projections revealed a significant bias in total annual precipitation days and total precipitation amounts. The average number of annual precipitation days across CONUS was projected to be 205 ± 26, 184 ± 33, and 181 ± 25 days in the BCC, CanESM, and UKESM models, respectively, compared to 91 ± 24 days in the observed data. Analyzing the duration of drought periods in different ecoregions of CONUS showed an increase in the number of drought months in the future (2023–2052) compared to the historical period (1989–2018). The analysis of precipitation and temperature changes in various ecoregions of CONUS revealed an increased frequency of droughts in the future, along with longer durations of warm spells. Eastern temperate forests and the Great Plains, which encompass the majority of CONUS agricultural lands, are projected to experience higher drought counts in the future. Drought projections show an increasing trend in future drought occurrences due to rising temperatures and changes in precipitation patterns. Our high-resolution climate projections can inform policy makers about the hotspots and their anticipated future trajectories.
Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann–Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.
Hierarchical optimization modeling in an algebraic modeling environment facilitates construction of large models with many interchangeable sub-models. However, for dynamic simulation and optimization applications, a flattened structure that preserves time indexing is preferred. To convert from a structure that facilitates model construction to a structure that facilitates dynamic optimization, the concept of reshaping an optimization model is introduced along with the recently developed utilities in the Pyomo algebraic modeling environment that make this possible. The application of these utilities to model predictive control simulations and partial differential equation (PDE) discretization stability analysis is discussed, and two challenging nonlinear model predictive control case studies are presented to demonstrate the advantages of this approach.
Recent developments integrating micromechanics and neural networks offer promising paths for rapid predictions of the response of heterogeneous materials with similar accuracy as direct numerical simulations. The deep material network is one such approaches, featuring a multi-layer network and micromechanics building blocks trained on anisotropic linear elastic properties. Once trained, the network acts as a reduced-order model, which can extrapolate the material’s behavior to more general constitutive laws, including nonlinear behaviors, without the need to be retrained. However, current training methods initialize network parameters randomly, incurring inevitable training and calibration errors. Here, we introduce a way to visualize the network parameters as an analogous unit cell and use this visualization to “quilt” patches of shallower networks to initialize deeper networks for a recursive training strategy. The result is an improvement in the accuracy and calibration performance of the network and an intuitive visual representation of the network for better explainability.
We report on the substantial advancement of long wavelength InAs-based interband cascade lasers (ICLs) utilizing advanced waveguides formed from hybrid cladding layers and targeting the 10-12μm wavelength region. Modifications in the hole injector have improved carrier transport in these ICLs, resulting in significantly reduced threshold voltages (Vth) as low as 3.62 V at 80 K. Consequently, much higher voltage efficiencies were observed, peaking at about 73% at 10.3μm and allowing for large output powers of more than 100 mW/facet. Also, low threshold current densities (Jth) of 8.8 A/cm2 in cw mode and 7.6 A/cm2 in pulsed mode near 10μm were observed; a result of adjustments in the GaInSb hole well composition intended to reduce the overall strain accumulation in the ICL. Furthermore, an ICL from the second wafer operating at a longer wavelength achieved a peak voltage efficiency of 57% at 11.7μm, with a peak output power of more than 27 mW/facet. This ICL went on to lase beyond 12μm in both cw and pulsed modes, representing a new milestone in long wavelength coverage for ICLs with the standard W-QW active region.
To understand the role of the grain boundary (GB) in plasticity at small scale, a concurrently coupled mesoscale plasticity model was developed to simulate micro-bending of bicrystalline micron-sized beams. By coupling dislocation dynamics (DD) with a finite element model (FEM), a novel defect dynamics model provides the means to investigate intricate interactions between dislocations and GBs under various loading conditions. Our simulations of micro-bending agree well with corresponding micro-bending experiments, and they show that mechanical response of bicrystals could have not only hardening but also softening depending on the characters of the GB. In addition, changing the location of the GB in the microbeams results in different mechanical responses; GBs located at the neutral plane show softening compared to single crystals, while inclined GBs located halfway along the length of the beam show little effect. Simulation results could provide a clear picture on detailed dislocation-GB interactions, and quantitative resolved shear stress analysis supplemented by dislocation density distribution is used to analyze the mechanical response of bicrystalline samples.
PyApprox is a Python-based one-stop-shop for probabilistic analysis of numerical models such as those used in the earth, environmental and engineering sciences. Easy to use and extendable tools are provided for constructing surrogates, sensitivity analysis, Bayesian inference, experimental design, and forward uncertainty quantification. The algorithms implemented represent a wide range of methods for model analysis developed over the past two decades, including recent advances in multi-fidelity approaches that use multiple model discretizations and/or simplified physics to significantly reduce the computational cost of various types of analyses. An extensive set of Benchmarks from the literature is also provided to facilitate the easy comparison of new or existing algorithms for a wide range of model analyses. This paper introduces PyApprox and its various features, and presents results demonstrating the utility of PyApprox on a benchmark problem modeling the advection of a tracer in groundwater.
A series of extensively instrumented tests was performed on the Structural Evaluation Test Unit in the early 1990s. The purpose of these tests was to determine the response of a minimally designed cask to impacts that were more severe than the design basis impact. This test series provides an excellent opportunity for benchmarking explicit dynamic finite element analysis programs for behaviors that may be experienced by casks during regulatory and extra-regulatory impact events. This report provides the results of the four tests that were conducted. It is meant to go along with a companion report that defines the benchmark problem and gives the locations for the instrumentation and inspection points.
Validation and verification of engineering models is important to understand potential weaknesses and issues in the model. This is accomplished through the application of constraint logic to the model. These models and the constraints put upon them can be represented through a graph structure. Here we give a visualization system to aid users understanding, locating, and fixing constraint violations in their systems. We give users several ways to narrow down on the specific errors and parts of the graph they’re interested in. Users have the opportunity to choose the types of errors that will be shown in the graph. Clustering is applied to the graph to help users narrow down their searches. Several other graph interactions are given to support discovery of constraint violations.
The 2-year Puerto Rico Grid Resilience and Transition to 100% Renewable Energy Study analyzed stakeholder-driven pathways to Puerto Rico’s clean energy future. Outputs relating to electricity demand modeling were partially informed by estimates of electric vehicle adoption across all classes of medium- and heavy-duty vehicles (MHDVs), and the ensuing charging loads. To create these estimates, the team developed a transportation model for MHDVs in Puerto Rico to estimate the amount and geospatial distribution of energy used. Charging schedules for the different end uses of MHDVs were then used to construct electric load shapes assuming a portion of those vehicles would be replaced by battery electric counterparts. Study results showed that, by 2050, electric vehicles may constitute roughly 50% of the MHDV population in Puerto Rico. The resulting electrical demand curve attributable to MHDV charging showed that, for solar energy-based electrical systems with limited energy storage, this demand may create challenges unless appropriately managed either on the demand or supply side.
This report covers an inquiry into seismoacoustic array processing using infrasound arrivals combined with resulting Ground Coupled Airwaves (GCA) that are present on collocated seismic sensors. In preparation, data calibration and denoising is completed for a seismoacoustic sensor array that was deployed at the Facility for Acceptance, Calibration, and Testing on Kirtland Airforce Base from August through September of 2021. The events of interest for this study are small, local explosive sources that lead to short duration, impulsive signals on the instruments. The goal is to determine if combining infrasound signals with the corresponding GCAs on collocated seismic sensors can be used to improve the results returned by automated signal detection and characterization (e.g., back azimuth estimates). Preparation for seismic and infrasound data involves removing the instrument response so that sensors have flat power spectra over the frequency range 0.1-10 Hz, where signal from events of interest may be detected. After instrument response removal, deployment conditions specific to this array require a retrospective noise analysis to determine station emplacement characteristics. Once all data is calibrated, a manual search is performed for possible GCA arrivals across the seismoacoustic network. These arrivals are then processed through beamforming and subsequent event identification, resulting in a catalogue of seismoacoustic GCA arrivals with corresponding back azimuth and trace velocity estimations.
There is currently very limited research into how experts analyze and assess potentially fraudulent content in their expertise areas, and most research within the disinformation space involves very limited text samples (e.g., news headlines). The overarching goal of the present study was to explore how an individual’s psychological profile and the linguistic features in text might influence an expert’s ability to discern disinformation/fraudulent content in academic journal articles. At a high level, the current design tasked experts with reading journal articles from their area of expertise and indicating if they thought an article was deceptive or not. Half the articles they read were journal papers that had been retracted due to academic fraud. Demographic and psychological inventory data collected on the participants was combined with performance data to generate insights about individual expert susceptibility to deception. Our data show that our population of experts were unable to reliably detect deception in formal technical writing. Several psychological dimensions such as comfort with uncertainty and intellectual humility may provide some protection against deception. This work informs our understanding of expert susceptibility to potentially fraudulent content within official, technical information and can be used to inform future mitigative efforts and provide a building block for future disinformation work.
The Strategic Petroleum Reserve (SPR) is the world’s largest supply of emergency crude oil. The reserve consists of four sites in Louisiana and Texas. Each site stores crude in deep, underground salt caverns. It is the mission of the SPR’s Enhanced Monitoring Program to examine available sensing data to inform our understanding of each site. This report discusses the monitoring data, processes, and results for each of the four sites for fiscal year 2023.
A series of extensively instrumented tests was performed on the Structural Evaluation Test Unit in the early 1990s. The purpose of these tests was to determine the response of a minimally designed cask to impacts that were more severe than the design basis impact. This test series provides an excellent opportunity for benchmarking explicit dynamic finite element analysis programs for behaviors that may be experienced by casks during regulatory and extra-regulatory impact events. This report provides the parameters of the test unit, the locations of instrumentation, the locations of inspection points, and the parameters of the four tests that were conducted. A companion report provides the results of the tests.
The subject of Task F of DECOVALEX-2023 concerns performance assessment modelling of radioactive waste disposal in deep mined repositories. The primary objectives of Task F are to build confidence in the models, methods, and software used for performance assessment (PA) of deep geologic nuclear waste repositories, and/or to bring to the fore additional research and development needed to improve PA methodologies. In Task F2-(salt), these objectives have been accomplished through staged development and comparison of the models and methods used by participating teams in their PA frameworks. Coupled-process submodels and deterministic simulations of the entire PA model for a reference scenario for waste disposal in domal salt have been conducted. The task specification has been updated continuously since the initiation of the project to reflect the staged development of the conceptual repository model and performance metrics.
Achieving robust and efficient drilling is a critical part of reducing the cost of geothermal energy exploration and extraction. Drilling performance is often evaluated using one or more of three key metrics: depth of cut (DOC), rate of penetration (ROP), and mechanical specific energy (MSE). All three of these quantities are related to each other. DOC refers to the depth a bit penetrates into rock during drilling. This is an important quantity for estimating bit behavior. ROP is the simply the DOC multiplied by the rotational rate, and represents how quickly the drill bit is advancing through the ground. ROP is often the parameter used for drilling control and optimization. Finally, MSE provides insight into drilling efficiency and rock type. MSE calculations rely on ROP, drilling force, and drilling torque. Surface-based sensors at the top of the drill are often used to measure all these quantities. However, top-hole measurements can deviate substantially from the behavior at the bit due to lag, vibrations, and friction. Therefore, relying only on top-hole information can lead to suboptimal drilling control. In this work, we describe recent progress towards estimating ROP, DOC, and MSE using down-hole sensing. We assume down-hole measurements of torque, weight-on-bit (WOB). Our hypothesis is that these measurements can provide more rapid and accurate measures of drilling performance. We show how a multi-layer perceptron (MLP) machine learning algorithm can provide rapid and accurate performance when evaluated on experimental data taken from Sandia’s Hard Rock Drilling Facility. In addition, we implement our algorithms on an embedded system intended to emulate a bottom-hole-assembly for sensing and estimation. Our experimental results show that DOC can be estimated accurately and in real-time. These estimates when combined with measurements for rotary speed, torque, and force can provide improved estimates for ROP and MSE. These results have the potential to enable better drilling assessment, improved control, and extended component lifetimes.
This technical report serves to summarize a literature search conducted that covered confidence calibration. This report is meant to serve as a solid starting reference for individuals interested in learning more about the confidence calibration domain as well as for individuals more familiar with this work – as a summarizing document for calibration metrics is notably lacking in the literature. This report is not meant to serve as a comprehensive review of everything that has been done in this field – in fact, the reader is encouraged to look further into this domain. We describe confidence and calibration and discuss properties of good calibration metrics. We detail various calibration and calibration-tangential metrics, presenting equations, algorithms, parameters, and an analysis of strengths and weaknesses. We apply a subset of these metrics to eight proxy confidence assessment datasets. We examine the various metrics in the context of model confidence. Finally, we discuss promising future directions and outstanding questions.
Redox flow batteries (RFBs) that incorporate solid energy-storing materials are attractive for high-capacity grid-scale energy storage due to their markedly higher theoretical energy densities compared to their fully liquid counterparts. However, this promise of higher energy density comes at the expense of rate capability. In this work we exploit a ZnO nanorod-decorated Ni foam scaffold to create a high surface area Li metal anode capable of rates up to 10 mA cm−2, a 10× improvement over traditional planar designs. The ZnO nanorods enhance Li metal wettability and promote uniform Li nucleation, allowing the RFB to be initially operated with a prelithiated (charged) anode, or with a safety-conscious, Li-less, fully discharged anode. 5 mgS cm−1 were cycled using a mediated S cathode, whereby redox mediators help oxidize and reduce solid S particles. At 2.4 mgS cm−2 and 10 mA cm−2, the RFB becomes limited by the mediation of solid S. Nevertheless, a respectable energy density of 20.3 Wh L−1 is demonstrated, allowing considerable increase if the S mediation rate can be further improved. Lessons learned here may be broadly applied to RFBs with alkali metal anodes, offering an avenue for safe, dense, grid-scale energy storage.
Sandia National Laboratories is a premier United States national security laboratory which develops science-based technologies in areas such as nuclear deterrence, energy production, and climate change. Computing plays a key role in its diverse missions, and within that environment, Research Software Engineers (RSEs) and other scientific software developers utilize testing automation to ensure quality and maintainability of their work. We conducted a Participatory Action Research study to explore the challenges and strategies for testing automation through the lens of academic literature. Through the experiences collected and comparison with open literature, we identify these challenges in testing automation and then present strategies for mitigation grounded in evidence-based practice and experience reports that other, similar institutions can assess for their automation needs.
This report summarizes the water inputs associated with four technologies playing diverse roles in energy transitions: hydrogen, solar photovoltaics (PV), wind, and batteries. Information in this report is drawn from multiple sources, including peer-reviewed literature, industry and international agency reports, EcoInvent life cycle inventory database, and subject matter expert (SME) consultations. Where possible, insights that characterized water requirements for specific stages of the technology development (e.g., operations, manufacturing, and mining) were prioritized over broader cradle-to-gate assessment values. Furthermore, both direct and indirect water requirements (i.e., associated with associated energy inputs) were considered in this literature review.
This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.
This report represents completion of milestone deliverable M2SF-24SN010309082 Annual Status Update for OWL due on November 30, 2023. It contains the status of fiscal year 2023 (FY2023) updates for the Online Waste Library (OWL).
Here, a review of current trends in scientific computing reveals a broad shift to open-source and higher-level programming languages such as Python and growing career opportunities over the next decade. Open-source modeling tools accelerate innovation in equation-based and data-driven applications. Significant resources have been deployed to develop data-driven tools (PyTorch, TensorFlow, Scikit-learn) from tech companies that rely on machine learning services to meet business needs while keeping the foundational tools open. Open-source equation-based tools such as Pyomo, CasADi, Gekko, and JuMP are also gaining momentum according to user community and development pace metrics. Integration of data-driven and principles-based tools is emerging. New compute hardware, productivity software, and training resources have the potential to radically accelerate progress. However, long-term support mechanisms are still necessary to sustain the momentum and maintenance of critical foundational packages.
Wuestefeld, Andreas; Spica, Zack J.; Aderhold, Kasey; Huang, Hsin-Hua; Ma, Kuo-Fong; Lai, Voon H.; Miller, Meghan; Urmantseva, Lena; Zapf, Daniel; Bowden, Daniel C.; Edme, Pascal; Kiers, Tjeerd; Rinaldi, Antonio P.; Tuinstra, Katinka; Jestin, Camille; Diaz-Meza, Sergio; Jousset, Philippe; Wollin, Christopher; Ugalde, Arantza; Ruiz Barajas, Sandra; Gaite, Beatriz; Currenti, Gilda; Prestifilippo, Michele; Araki, Eiichiro; Tonegawa, Takashi; De Ridder, Sjoerd; Nowacki, Andy; Lindner, Fabian; Schoenball, Martin; Wetter, Christoph; Zhu, Hong-Hu; Baird, Alan F.; Rorstadbotnen, Robin A.; Ajo-Franklin, Jonathan; Ma, Yuanyuan; Abbott, Robert; Hodgkinson, Kathleen M.; Porritt, Robert W.; Stanciu, Adrian C.; Podrasky, Agatha; Hill, David; Biondi, Biondo; Yuan, Siyuan; Bin LuoBin; Nikitin, Sergei; Morten, Jan P.; Dumitru, Vlad-Andrei; Lienhart, Werner; Cunningham, Erin; Wang, Herbert
During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Finally, organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address.
Computational simulation is increasingly relied upon for high/consequence engineering decisions, which necessitates a high confidence in the calibration of and predictions from complex material models. However, the calibration and validation of material models is often a discrete, multi-stage process that is decoupled from material characterization activities, which means the data collected does not always align with the data that is needed. To address this issue, an integrated workflow for delivering an enhanced characterization and calibration procedure—Interlaced Characterization and Calibration (ICC)—is introduced and demonstrated. Further, this framework leverages Bayesian optimal experimental design (BOED), which creates a line of communication between model calibration needs and data collection capabilities in order to optimize the information content gathered from the experiments for model calibration. Eventually, the ICC framework will be used in quasi real-time to actively control experiments of complex specimens for the calibration of a high-fidelity material model. This work presents the critical first piece of algorithm development and a demonstration in determining the optimal load path of a cruciform specimen with simulated data. Calibration results, obtained via Bayesian inference, from the integrated ICC approach are compared to calibrations performed by choosing the load path a priori based on human intuition, as is traditionally done. The calibration results are communicated through parameter uncertainties which are propagated to the model output space (i.e. stress–strain). In these exemplar problems, data generated within the ICC framework resulted in calibrated model parameters with reduced measures of uncertainty compared to the traditional approaches.
Bimetallic, reactive multilayers are uniformly structured materials composed of alternating sputter-deposited layers that may be ignited to produce self-propagating mixing and formation reactions. These nanolaminates are most commonly used as rapid-release heat sources. The specific chemical composition at each metal/metal interface determines the rate of mass transport in a mixing and formation reaction. The inclusion of engineered diffusion barriers at each interface will not only inhibit solid-state mixing but also may impede the self-propagating reactions by introducing instabilities to wavefront morphology. This work examines the effect of adding diffusion barriers on the propagation of reaction waves in Co/Al multilayers. The Co/Al system has been shown to exhibit a reaction propagation instability that is dependent on the bilayer thickness, which allows for the occurrence of unstable modes in otherwise stable designs from the inclusion of diffusion barriers. Based on the known stability criteria in the Co/Al multilayer system, the way in which the inclusion of diffusion barriers changes a multilayer's heat of reaction, thermal conductivity, and material mixing mechanisms can be determined. These factors, in aggregate, lead to changes in the wavefront velocity and stability.
Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-localized states appear at the interface formed between topologically distinct insulating materials. However, many topological photonic devices share a boundary with free space, which raises a subtle but critical problem as free space is gapless for photons above the light line. Here, we use a local theory of topological materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite operator based on the system’s real-space description that provides a local marker for the system’s topology and a corresponding local measure of its topological protection; both quantities are independent of the material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption overestimates a heterostructure’s topological protection. Importantly, as the spectral localizer is applicable to systems in any physical dimension and in any discrete symmetry class (i.e., any Altland-Zirnbauer class), our results show how to calculate topological invariants, quantify topological protection, and locate topological boundary-localized resonances in topological materials that interface with gapless media in general.
Here, using atomistic molecular dynamics simulations, we investigate the morphology and transport properties of a new family of fluorine-free terpolymers designed as proton-exchange membranes. Simulated random terpolymers consist of three monomers with a 5-carbon backbone with a phenylsulfonate, phenyl, or no pendant group and have ion exchange capacities (IECs) ranging from 1.06–4.14 mmol/g. At a hydration level of 9, cluster analysis reveals macrophase separation between water and terpolymers with IEC < 2.1 mmol/g and continuous, percolated hydrophilic and hydrophobic nanoscale domains at higher IECs. Channel width distribution analysis of the percolated morphologies revealed that more hydrophobic units produce less uniform channels. Decreasing the surface area per sulfonate group and increasing the fractal dimension of the hydrophilic domains correlate with increased water diffusivity, due to a more acidic interface and more isotropic water channels. Relative to the previously studied phenylsulfonate homopolymer, these terpolymers with lower IECs have only modestly lower water diffusion, and we anticipate other advantages related to processability.
Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical $K$ -theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Here, our nonlinear spectral localizer framework yields a quantitative definition of topologically nontrivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials.
Derived from renewable feedstocks, such as biomass, polylactic acid (PLA) is considered a more environmentally friendly plastic than conventional petroleum-based polyethylene terephthalate (PET). However, PLA must still be recycled, and its growing popularity and mixture with PET plastics at the disposal stage poses a cross-contamination threat in existing recycling facilities and results in low-value and low-quality recycled products. Hybrid upcycling has been proposed as a promising sustainable solution for mixed plastic waste, but its techno-economic and life cycle environmental performance remain understudied. Here we propose a hybrid upcycling approach using a biocompatible ionic liquid (IL) to first chemically depolymerize plastics and then convert the depolymerized stream via biological upgrading with no extra separation. We show that over 95% of mixed PET/PLA was depolymerized into the respective monomers, which then served as the sole carbon source for the growth of Pseudomonas putida, enabling the conversion of the depolymerized plastics into biodegradable polyhydroxyalkanoates (PHAs). In comparison to conventional commercial PHAs, the estimated optimal production cost and carbon footprint are reduced by 62% and 29%, respectively.
The United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign seeks to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. The evaluation of long-term performance of the repository may need to consider the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential for this situation to occur in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. DOE has been considering disposing of SNF in DPCs to avoid the costs and worker dose associated with repackaging the SNF currently stored in DPCs into repository-specific canisters. This report examines the consequences of postclosure criticality to provide technical support to DOE in developing a disposal plan.
Sheldon, Craig S.; Salazar, Jorge; Palacios Diaz, Teresa; Morton, Katie; Davis, Ryan; Davies, James F.
Aerosol particles are known to exist in highly viscous amorphous states at a low relative humidity and temperature. The slow diffusion of molecules in viscous particles impacts the uptake and loss of volatile and semivolatile species and the rate of heterogeneous chemistry. Recent work has demonstrated that in particles containing organic molecules and salts, the formation of two-phase gel states is possible, leading to observations of rigid particles that resist coalescence. The way that molecules diffuse and transport in gel systems is not well-characterized. In this work, we use an electrodynamic balance to levitate sample particles containing a range of organic compounds in mixtures with calcium chloride and measure the rate of water diffusion. Particles of the pure organics have been shown to form viscous amorphous states, while in mixtures with divalent salts, coalescence measurements have revealed the apparent solidification of particles, consistent with the formation of a gel state facilitated by ion-molecule interactions. We report in several cases that water transport can actually be increased in the rigid gel state relative to the pure compound that forms a viscous state under similar conditions. These measurements reveal the limitations of using viscosity as a metric for predicting molecular diffusion and that the gel structure that forms is a much stronger controlling factor in the rate of diffusion. This underscores the need for diffusion measurements as well as a deeper understanding of noncovalent molecular assembly that leads to supramolecular structures in aerosol particles.
An optically recording velocity interferometer system has been used to measure acceleration histories and maximum velocities for laser-driven aluminum foil targets launched from the output face of optical fibers. Peak flyer velocities have been determined as a function of various parameters, including driving laser fluence, laser pulse duration and target thickness. The results at high fluences are consistent with a nearly constant efficiency of coupling optical energy into flyer kinetic energy and a small ablated mass fraction; however, the coupling efficiency falls off rapidly at fluences < 15 J-cm-2. Measurement of the time delay between laser pulse arrival at the target and the onset of flyer motion have also been performed. Significant delays are observed at low fluences, arising from the increased time required for plasma formation at the fiber/foil interface under these conditions.
Howard, Amanda A.; Perego, Mauro; Karniadakis, George E.; Stinis, Panos
Operator learning for complex nonlinear systems is increasingly common in modeling multi-physics and multi-scale systems. However, training such high-dimensional operators requires a large amount of expensive, high-fidelity data, either from experiments or simulations. In this work, we present a composite Deep Operator Network (DeepONet) for learning using two datasets with different levels of fidelity to accurately learn complex operators when sufficient high-fidelity data is not available. Additionally, we demonstrate that the presence of low-fidelity data can improve the predictions of physics-informed learning with DeepONets. We demonstrate the new multi-fidelity training in diverse examples, including modeling of the ice-sheet dynamics of the Humboldt glacier, Greenland, using two different fidelity models and also using the same physical model at two different resolutions.
The purpose of pvOps is to support empirical evaluations of data collected in the field related to the operations and maintenance (O&M) of photovoltaic (PV) power plants. pvOps presently contains modules that address the diversity of field data, including text-based maintenance logs, current-voltage (IV) curves, and timeseries of production information. The package functions leverage machine learning, visualization, and other techniques to enable cleaning, processing, and fusion of these datasets. These capabilities are intended to facilitate easier evaluation of field patterns and extraction of relevant insights to support reliability-related decision-making for PV sites. The open-source code, examples, and instructions for installing the package through PyPI can be accessed through the GitHub repository.
Electric fields are commonplace in plasmas and affect transport by driving currents and, in some cases, instabilities. The necessary condition for instability in collisionless plasmas is commonly understood to be described by the Penrose criterion, which quantifies a sufficient relative drift between different populations of particles that must be present for wave amplification via inverse Landau damping. For example, electric fields generate drifts between electrons and ions that can excite the ion-acoustic instability. Here, we use particle-in-cell simulations and linear stability analysis to show that the electric field can drive a fundamentally different type of kinetic instability, named the electron-field instability. This instability excites electron plasma waves with wavelengths ≳30λDe, has a growth rate that is proportional to the electric field strength, and does not require a relative drift between electrons and ions. The Penrose criterion does not apply when accounting for the electric field. Furthermore, the large value of the observed frequency, near the electron plasma frequency, further distinguishes it from the standard ion-acoustic instability, which oscillates near the ion plasma frequency. The ubiquity of macroscopic electric fields in quasineutral plasmas suggests that this instability is possible in a host of systems, including low-temperature and space plasmas. In fact, damping from neutral collisions in such systems is often not enough to completely damp the instability, adding to the robustness of the instability across plasma conditions.
Sandia National Laboratories (SNL) and the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) have collaborated on the design and execution of a set of critical experiments that explore the effects of molybdenum in water moderated fuel-rod arrays. The molybdenum is included as sleeves (tubes) on some of the fuel rods in the arrays. The fuel used in the experiments is known at Sandia as the Seven Percent Critical Experiment (7uPCX) fuel. This fuel has been used is several published benchmark evaluations in including LEU-COMP-THERM-78 and LEU-COMP THERM-080.
Characterizing and quantifying microstructure evolution is critical to forming quantitative relationships between material processing conditions, resulting microstructure, and observed properties. Machine-learning methods are increasingly accelerating the development of these relationships by treating microstructure evolution as a pattern recognition problem, discovering relationships explicitly or implicitly. These methods often rely on identifying low-dimensional microstructural fingerprints as latent variables. However, using inappropriate latent variables can lead to challenges in learning meaningful relationships. In this work, we survey and discuss the ability of various linear and nonlinear dimensionality reduction methods including principal component analysis, autoencoders, and diffusion maps to quantify and characterize the learned latent space microstructural representations and their time evolution. We characterize latent spaces by their ability to represent high-dimensional microstructural data in terms of compression achieved as a function of the number of latent dimensions required to represent the data accurately, their accuracy based on their reconstruction performance, and the smoothness of the microstructural trajectories in latent dimension. We quantify these metrics for common microstructure evolution problems in material science including spinodal decomposition of a binary metallic alloy, thin film deposition of a binary metallic alloy, dendritic growth, and grain growth in a polycrystal. This study provides considerations and guidelines for choosing dimensionality reduction methods when considering materials problems that involve high dimensional data and a variety of features over a range of lengths and time scales.
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Cho, Jaeyoung; Rosch, Daniel; Tao, Yujie; Osborn, David L.; Klippenstein, Stephen J.; Sheps, Leonid; Sivaramakrishnan, Raghu
Methyl formate (MF; CH3OCHO) is the smallest representative of esters, which are common components of biodiesel. The present study characterizes the thermal dissociation kinetics of the radicals formed by H atom abstraction from MF—CH3OCO and CH2OCHO—through a combination of modeling, experiment, and theory. For the experimental effort, excimer laser photolysis of Cl2 was used as a source of Cl atoms to initiate reactions with MF in the gas phase. Time-resolved species profiles of MF, Cl2, HCl, CO2, CH3, CH3Cl, CH2O, and CH2ClOCHO were measured and quantified using photoionization mass spectrometry at temperatures of 400–750 K and 10 Torr. The experimental data were simulated using a kinetic model, which was informed by ab initio-based theoretical kinetics calculations and included chlorine chemistry and secondary reactions of radical decomposition products. Here, we calculated the rate coefficients for the H-abstraction reactions Cl + MF → HCl + CH3OCO (R1a) and Cl + MF → HCl + CH2OCHO (R1b): k1a,theory = 6.71 × 10–15·T1.14·exp(—606/T) cm3/molecule·s; k1b,theory = 4.67 × 10–18·T2.21·exp(—245/T) cm3/molecule·s over T = 200–2000 K. Electronic structure calculations indicate that the barriers to CH3OCO and CH2OCHO dissociation are 13.7 and 31.6 kcal/mol and lead to CH3 + CO2 (R3) and CH2O + HCO (R5), respectively. The master equation-based theoretical rate coefficients are k3,theory (P = ∞) = 2.94 × 109·T1.21·exp(—6209/T) s–1 and k5,theory (P = ∞) = 8.45 × 108·T1.39·exp(—15132/T) s–1 over T = 300–1500 K. The calculated branching fractions into R1a and R1b and the rate coefficient for R5 were validated by modeling of the experimental species time profiles and found to be in excellent agreement with theory. Additionally, we found that the bimolecular reactions CH2OCHO + Cl, CH2OCHO + Cl2, and CH3 + Cl2 were critical to accurately model the experimental data and constrain the kinetics of MF-radicals. Inclusion of the kinetic parameters determined in this study showed a significant impact on combustion simulations of larger methyl esters, which are considered as biodiesel surrogates.