Publications

Results 87101–87200 of 96,771

Search results

Jump to search filters

Photonic encryption using all optical logic

Tang, Jason D.; Tarman, Thomas D.; Pierson, Lyndon G.; Blansett, Ethan B.; Vawter, Gregory A.; Robertson, Perry J.; Schroeppel, Richard C.

With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. We found that a low gate count, cascadable encryption algorithm is most feasible given device and processing constraints. The modeling and simulation of optical designs using these components is proceeding in parallel with efforts to perfect the physical devices and their interconnect. We have applied these techniques to the development of a 'toy' algorithm that may pave the way for more robust optical algorithms. These design/modeling/simulation techniques are now ready to be applied to larger optical designs in advance of our ability to implement such systems in hardware.

More Details

ChemCell : a particle-based model of protein chemistry and diffusion in microbial cells

Plimpton, Steven J.; Slepoy, Alexander S.

Prokaryotic single-cell microbes are the simplest of all self-sufficient living organisms. Yet microbes create and use much of the molecular machinery present in more complex organisms, and the macro-molecules in microbial cells interact in regulatory, metabolic, and signaling pathways that are prototypical of the reaction networks present in all cells. We have developed a simple simulation model of a prokaryotic cell that treats proteins, protein complexes, and other organic molecules as particles which diffuse via Brownian motion and react with nearby particles in accord with chemical rate equations. The code models protein motion and chemistry within an idealized cellular geometry. It has been used to simulate several simple reaction networks and compared to more idealized models which do not include spatial effects. In this report we describe an initial version of the simulation code that was developed with FY03 funding. We discuss the motivation for the model, highlight its underlying equations, and describe simulations of a 3-stage kinase cascade and a portion of the carbon fixation pathway in the Synechococcus microbe.

More Details

Improved kinematic options in ALEGRA

Robinson, Allen C.; Farnsworth, Grant V.

Algorithms for higher order accuracy modeling of kinematic behavior within the ALEGRA framework are presented. These techniques improve the behavior of the code when kinematic errors are found, ensure orthonormality of the rotation tensor at each time step, and increase the accuracy of the Lagrangian stretch and rotation tensor update algorithm. The implementation of these improvements in ALEGRA is described. A short discussion of issues related to improving the accuracy of the stress update procedures is also included.

More Details

SREF - a Simple Removable Epoxy Foam decomposition chemistry model

Hobbs, Michael L.

A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric analysis (TGA) experiments performed at 24 different conditions. The average RMS error between the model and the 133 experiments was 4.25%. The model was also used to predict the response of two other removable epoxy foams with different compositions as well as the pressure rise in a constant volume hot cell.

More Details

Recyclable transmission line concept for z-pinch driven inertial fusion energy

Slutz, Stephen A.; Vesey, Roger A.; Olson, Craig L.; Cochrane, Kyle C.

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

More Details

North Korea's nuclear weapons program:verification priorities and new challenges

Olsen, John N.

A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

More Details

Higher-order transformation and the distributed data problem

Wickstrom, Gregory L.

The distributed data problem, is characterized by the desire to bring together semantically related data from syntactically unrelated portions of a term. Two strategic combinators, dynamic and transient, are introduced in the context of a classical strategic programming framework. The impact of the resulting system on instances of the distributed data problem is then explored.

More Details

Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report

Vawter, Gregory A.; Peters, D.W.; Wendt, J.R.; Hadley, G.R.; Peake, Gregory M.; Guo, Junpeng; Subramania, Ganapathi S.

Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.

More Details

Chem-Prep PZT 95/5 for neutron generator applications : development of laboratory-scale powder processing operations

Moore, Roger H.; Montoya, Ted V.; Spindle, Thomas L.

Chemical synthesis methods are being developed as a future source of PZT 95/5 powder for neutron generator voltage bar applications. Laboratory-scale powder processes were established to produce PZT billets from these powders. The interactions between calcining temperature, sintering temperature, and pore former content were studied to identify the conditions necessary to produce PZT billets of the desired density and grain size. Several binder systems and pressing aids were evaluated for producing uniform sintered billets with low open porosity. The development of these processes supported the powder synthesis efforts and enabled comparisons between different chem-prep routes.

More Details

The integration of advanced photonics and MEMS : LDRD 26519 final report

Fleming, J.G.; Lin, Shawn-Yu L.

In this work we have demonstrated the fabrication of two different classes of devices which demonstrate the integration of simple MEMS structures with photonics structures. In the first class of device a suspended, movable Si waveguide was designed and fabricated. This waveguide was designed to be able to be actuated so that it could be brought into close proximity to a ring resonator or similar structure. In the course of this work we also designed a technique to improve the input coupling to the waveguide. While these structures were successfully fabricated, post fabrication and testing involved a significant amount of manipulation of the devices and due to their relatively flimsy nature our structures could not readily survive this extra handling. As a result we redesigned our devices so that instead of moving the waveguides themselves we moved a much smaller optical element into close proximity to the waveguides. Using this approach it was also possible to fabricate a much larger array of actively switched photonic devices: switches, ring resonators, couplers (which act as switches or splitters) and attenuators. We successfully fabricated all these structures and were able to successfully demonstrate splitters, switches and attenuators. The quality of the SiN waveguides fabricated in this work were found to be qualitatively compatible to those made using semiconductor materials.

More Details

Large deformation solid-fluid interaction via a level set approach

Rao, Rekha R.; Noble, David R.; Schunk, Randy; Wilkes, Edward D.; Baer, Thomas A.; Notz, Patrick N.

Solidification and blood flow seemingly have little in common, but each involves a fluid in contact with a deformable solid. In these systems, the solid-fluid interface moves as the solid advects and deforms, often traversing the entire domain of interest. Currently, these problems cannot be simulated without innumerable expensive remeshing steps, mesh manipulations or decoupling the solid and fluid motion. Despite the wealth of progress recently made in mechanics modeling, this glaring inadequacy persists. We propose a new technique that tracks the interface implicitly and circumvents the need for remeshing and remapping the solution onto the new mesh. The solid-fluid boundary is tracked with a level set algorithm that changes the equation type dynamically depending on the phases present. This novel approach to coupled mechanics problems promises to give accurate stresses, displacements and velocities in both phases, simultaneously.

More Details

High throughput instruments, methods, and informatics for systems biology

Davidson, George S.; Sinclair, Michael B.; Thomas, Edward V.; Werner-Washburne, Margaret; Martin, Shawn; Boyack, Kevin W.; Wylie, Brian N.; Haaland, David M.; Timlin, Jerilyn A.; Keenan, Michael R.

High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

More Details

Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report

Galambos, Paul

The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

More Details

Quantum computing accelerator I/O : LDRD 52750 final report

Tigges, Chris P.; Modine, N.A.; Pierson, Lyndon G.; Ganti, Anand G.; Schroeppel, Richard C.

In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.

More Details

Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report

Casalnuovo, Stephen A.; Hughes, R.C.

Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

More Details

Penetration of a transverse supersonic jet into a subsonic compressible crossflow

Beresh, Steven J.; Henfling, John F.; Erven, Rocky E.; Spillers, Russell W.

Particle image velocimetry data have been acquired in the far field of the interaction generated by an overexpanded axisymmetric supersonic jet exhausting transversely from a flat plate into a subsonic compressible crossflow. Mean velocity fields were found in the streamwise plane along the flowfield centerline for different values of the crossflow Mach number M{sub {infinity}} and the jet-to-freestream dynamic pressure ratio J. The magnitude of the streamwise velocity deficit and the vertical velocity component both decay with downstream distance and were observed to be greater for larger J while M{sub {infinity}} remained constant. Jet trajectories derived independently using the maxima of each of these two velocity components are not identical, but show increasing jet penetration for larger J. Similarity in the normalized velocity field was found for constant J at two different transonic M{sub {infinity}}, but at two lower M{sub {infinity}} the jet appeared to interact with the wall boundary layer and data did not collapse. The magnitude and width of the peak in the vertical velocity component both increase with J, suggesting that the strength and size of the counter-rotating vortex pair increase and, thus, may have a stronger influence on aerodynamic surfaces despite further jet penetration from the wall.

More Details

Confidence building measures at sea:opportunities for India and Pakistan

Betsill, J.D.

The sea presents unique possibilities for implementing confidence building measures (CBMs) between India and Pakistan that are currently not available along the contentious land borders surrounding Jammu and Kashmir. This is due to the nature of maritime issues, the common military culture of naval forces, and a less contentious history of maritime interaction between the two nations. Maritime issues of mutual concern provide a strong foundation for more far-reaching future CBMs on land, while addressing pressing security, economic, and humanitarian needs at sea in the near-term. Although Indian and Pakistani maritime forces currently have stronger opportunities to cooperate with one another than their counterparts on land, reliable mechanisms to alleviate tension or promote operational coordination remain non-existent. Therefore, possible maritime CBMs, as well as pragmatic mechanisms to initiate and sustain cooperation, require serious examination. This report reflects the unique joint research undertaking of two retired Senior Naval Officers from both India and Pakistan, sponsored by the Cooperative Monitoring Center of the International Security Center at Sandia National Laboratories. Research focuses on technology as a valuable tool to facilitate confidence building between states having a low level of initial trust. Technical CBMs not only increase transparency, but also provide standardized, scientific means of interacting on politically difficult problems. Admirals Vohra and Ansari introduce technology as a mechanism to facilitate consistent forms of cooperation and initiate discussion in the maritime realm. They present technical CBMs capable of being acted upon as well as high-level political recommendations regarding the following issues: (1) Delimitation of the maritime boundary between India and Pakistan and its relationship to the Sir Creek dispute; (2) Restoration of full shipping links and the security of ports and cargos; (3) Fishing within disputed areas and resolution of issues relating to arrest and repatriation of fishermen from both sides; and (4) Naval and maritime agency interaction and possibilities for cooperation.

More Details

Overview of recent experimental results from the DIII-D advanced tokamak program

Proposed for publication in Nuclear Fusion.

Wampler, William R.

The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last international atomic energy agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: (1) we have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, we have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4{tau}{sub E} limited by the neoclassical tearing mode (NTM); (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m, n) = (3, 2) NTM and then increased {beta}{sub T} by 60%; (4) we have produced ECCD stabilization of the (2, 1) NTM in initial experiments; (5) we have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) we have demonstrated stationary tokamak operation for 6.5 s (36{tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx_equal} as ITER but at much higher q{sub 95} = 4.2. We have developed general improvements applicable to conventional and AT operating modes: (1) we have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, edge localized modes (ELM) heat load to the divertor and which can run for long periods of time (3.8 s or 25{tau}{sub E}) with constant density and constant radiated power; (2) we have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) we have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. We have made detailed investigations of the edge pedestal and scrape-off layer (SOL): (1) atomic physics and plasma physics both play significant roles in setting the width of the edge density barrier in H-mode; (2) ELM heat flux conducted to the divertor decreases as density increases; (3) intermittent, bursty transport contributes to cross field particle transport in the SOL of H-mode and, especially, L-mode plasmas.

More Details

Effect of Weather on Landmine Chemical Signatures for Different Climates

Proceedings of SPIE - The International Society for Optical Engineering

Webb, Stephen W.; Phelan, James M.

Buried landmines are often detected through their chemical signature in the thin air layer, or boundary layer, right above the soil surface by sensors or animals. Environmental processes play a significant role in the available chemical signature. Due to the shallow burial depth of landmines, the weather also influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for three different climates: Kabul, Afghanistan, Ft. Leonard Wood, Missouri, USA, and Napacala, Mozambique. Results for TNT gas-phase and solid-phase concentrations are presented as a function of time of the year.

More Details

Efficient light emission by a three-dimensional, all-metallic photonic crystal and its energy consequences

Proceedings of SPIE - The International Society for Optical Engineering

Lin, Shawn-Yu L.; Fleming, J.G.

A review is given on the recent progress in three-dimensional (3D) all-metallic photonic-crystals in the near- and mid-infrared wavelengths. Results of optical spectroscopy of the sample will be described. Unique light emission characteristics at a narrow band from the photonic-crystal will also be presented. This new class of 3D all-metallic photonic-crystal is promising for thermal photo-voltaic power generation and for lighting application.

More Details

Tools and Techniques for Failure Analysis and Qualification of MEMS

IEEE International Test Conference (TC)

Walraven, J.A.

Various tools and techniques, which were leveraged from the IC industry, were used for the failure analysis and qualification of MEMS. Resistive contrast imaging (RCI) was employed to analyze a wide variety of MEMS technologies. Multi-functional analytical tools are able to operate several samples in parallel and extract structural, chemical and electrical information.

More Details

Future Challenges for MEMS Failure Analysis

IEEE International Test Conference (TC)

Walraven, J.A.

MEMS processes and components are rapidly changing in device design, processing, and, most importantly, application. This paper will discuss the future challenges faced by the MEMS failure analysis as the field of MEMS (fabrication, component design, and applications) grows. Specific areas of concern for the failure analyst will also be discussed.

More Details

Introduction to Applications and Industries for Microelectromechanical Systems (MEMS)

IEEE International Test Conference (TC)

Walraven, J.A.

Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment systems, inkjet print head systems, and optical routers. This paper will discuss current and future MEMS applications.

More Details

Failure Mechanisms in MEMS

IEEE International Test Conference (TC)

Walraven, J.A.

MEMS components by their very nature have different and unique failure mechanisms than their macroscopic counterparts. This paper discusses failure mechanisms observed in various MEMS components and technologies. MEMS devices fabricated using bulk and surface micromachining process technologies are emphasized.

More Details

Automation tools for flexible aircraft maintenance

Drotning, William D.; Kozlowski, David M.; Loucks, Clifford S.; Prentice, William J.; Watterberg, Peter A.

This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

More Details

Passive legged, multi-segmented, robotic vehicle

Hayward, David R.

The Passive-legged, Multi-segmented, Robotic Vehicle concept is a simple legged vehicle that is modular and scaleable, and can be sized to fit through confined areas that are slightly larger than the size of the vehicle. A specific goal of this project was to be able to fit through the opening in the fabric of a chain link fence. This terrain agile robotic platform will be composed of multiple segments that are each equipped with appendages (legs) that resemble oars extending from a boat. Motion is achieved by pushing with these legs that can also flex to fold next to the body when passing through a constricted area. Each segment is attached to another segment using an actuated joint. This joint represents the only actuation required for mobility. The major feature of this type of mobility is that the terrain agility advantage of legs can be attained without the complexity of the multiple-actuation normally required for the many joints of an active leg. The minimum number of segments is two, but some concepts require three or more segments. This report discusses several concepts for achieving this type of mobility, their design, and the results obtained for each.

More Details

Covert air vehicle 2003 LDRD final report

Callow, Diane S.; Salton, Jonathan R.; Fischer, Gary J.

This report describes the technical work carried out under a 2003 Laboratory Directed Research and Development project to develop a covert air vehicle. A mesoscale air vehicle that mimics a bird offers exceptional mobility and the possibility of remaining undetected during flight. Although some such vehicles exist, they are lacking in key areas: unassisted landing and launching, true mimicry of bird flight to remain covert, and a flapping flight time of any real duration. Current mainstream technology does not have the energy or power density necessary to achieve bird like flight for any meaningful length of time; however, Sandia has unique combustion powered linear actuators with the unprecedented high energy and power density needed for bird like flight. The small-scale, high-pressure valves and small-scale ignition to make this work have been developed at Sandia. We will study the feasibility of using this to achieve vehicle takeoff and wing flapping for sustained flight. This type of vehicle has broad applications for reconnaissance and communications networks, and could prove invaluable for military and intelligence operations throughout the world. Initial tests were conducted on scaled versions of the combustion-powered linear actuator. The tests results showed that heat transfer and friction effects dominate the combustion process at 'bird-like' sizes. The problems associated with micro-combustion must be solved before a true bird-like ornithopter can be developed.

More Details

Nanostructured polyoxometalate arrays with unprecedented properties and functions

Nyman, M.; Dunphy, Darren R.; Brinker, C.J.

Polyoxometalates (POMs) are ionic (usually anionic) metal -oxo clusters that are both functional entities for a variety of applications, as well as structural units that can be used as building blocks if reacted under appropriate conditions. This is a powerful combination in that functionality can be built into materials, or doped into matrices. Additionally, by assembling functional POMs in ordered materials, new collective behaviors may be realized. Further, the vast variety of POM geometries, compositions and charges that are achievable gives this system a high degree of tunability. Processing conditions to link together POMs to build materials offer another vector of control, thus providing infinite possibilities of materials that can he nano-engineered through POM building blocks. POM applications that can be built into POM-based materials include catalysis, electro-optic and electro-chromic, anti-viral, metal binding, and protein binding. We have begun to explore three approaches in developing this field of functional, nano-engineered POM-based materials; and this report summarizes the work carried out for these approaches to date. The three strategies are: (1) doping POMs into silica matrices using sol-gel science, (2) forming POM-surfactant arrays and metal-POM-surfactant arrays, (3) using aerosol-spray pyrolysis of the POM-surfactant arrays to superimpose hierarchical architecture by self-assembly during aerosol-processing. Doping POMs into silica matrices was successful, but the POMs were partially degraded upon attempts to remove the structure-directing templates. The POM-surfactant and metal-POM-surfactant arrays approach was highly successful and holds much promise as a novel approach to nano-engineering new materials from structural and functional POM building blocks, as well as forming metastable or unusual POM geometries that may not be obtained by other synthetic methods. The aerosol-assisted self assembly approach is in very preliminary state of investigation, but also shows promise in that structured materials were formed; where the structure was altered by aerosol processing. We will be seeking alternative funding to continue investigating the second synthetic strategy that we have begun to develop during this 1-year project.

More Details

Suppression of electron emission from metal electrodes : LDRD 28771 final report

Johnson, David J.; Fowler, William E.; Ives, Harry C.; Savage, Mark E.; Stygar, William A.

This research consisted of testing surface treatment processes for stainless steel and aluminum for the purpose of suppressing electron emission over large surface areas to improve the pulsed high voltage hold-off capabilities of these metals. Improvements to hold-off would be beneficial to the operation of the vacuum-insulator grading rings and final self-magnetically insulated transmission line on the ZR-upgrade machine and other pulsed power applications such as flash radiograph and pulsed-microwave machines. The treatments tested for stainless steel include the Z-protocol (chemical polish, HVFF, and gold coating), pulsed E-beam surface treatments by IHCE, Russia, and chromium oxide coatings. Treatments for aluminum were anodized and polymer coatings. Breakdown thresholds also were measured for a range of surface finishes and gap distances. The study found that: (1.) Electrical conditioning and solvent cleaning in a filtered air environment each improve HV hold-off 30%. (2.) Anodized coatings on aluminum give a factor of two improvement in high voltage hold-off. However, anodized aluminum loses this improvement when the damage is severe. Chromium oxide coatings on stainless steel give a 40% and 20% improvement in hold-off before and after damage from many arcs. (3.) Bare aluminum gives similar hold-off for surface roughness, R{sub a}, ranging from 0.08 to 3.2 {micro}m. (4.) The various EBEST surfaces tested give high voltage hold-off a factor of two better than typical machined and similar to R{sub a} = 0.05 {micro}m polished stainless steel surfaces. (5.) For gaps > 2 mm the hold-off voltage increases as the square root of the gap for bare metal surfaces. This is inconsistent with the accepted model for metals that involves E-field induced electron emission from dielectric inclusions. Micro-particles accelerated across the gap during the voltage pulse give the observed voltage dependence. However the similarity in observed breakdown times for large and small gaps places a requirement that the particles be of molecular size. This makes accelerated micro-particle induced breakdown seem improbable also.

More Details

Multipurpose locator tag system : LDRD 65145 final report

Greenway, Douglas G.; Schuster, Gary R.

This report summarizes work performed to determine the capability of the Pinpoint Locator system, a commercial system designed and manufactured by RF Technologies. It is intended for use in finding people with locator badges in multi-story buildings. The Pinpoint system evaluated is a cell-based system, meaning it can only locate badges within an area bordered by its antennas.

More Details

In-situ characterization of colloidal soft solution processes

Bell, Nelson S.; Tallant, David T.; Rodriguez, M.A.

The purpose of this program was to investigate methods to characterize the colloidal stability of nanoparticles during the synthesis reaction, and to characterize their organization related to interparticle forces. Studies were attempted using Raman spectroscopy and ultrasonic attenuation to observe the nucleation and growth process with characterization of stability parameters such as the zeta potential. The application of the techniques available showed that the instrumentation requires high sensitivity to the concentration of the system. Optical routes can be complicated by the scattering effects of colloidal suspensions, but dilution can cause a lowering of signal that prevents collection of data. Acoustic methods require a significant particle concentration, preventing the observation of nucleation events. Studies on the dispersion of nanoparticles show that electrostatic routes are unsuccessful with molecular surfactants at high particle concentration due to electrostatic interaction collapse by counterions. The study of molecular surfactants show that steric lengths on the order of 2 nm are successful for dispersion of nanoparticle systems at high particle concentration, similar to dispersion with commercial polyelectrolyte surfactants.

More Details

A least squares method for CVT calibration in a RLC capacitor discharge circuit

Yao, Stephen E.; Pecak, Sara N.; Dickey, Fred M.

In many applications, the ability to monitor the output of a capacitive discharge circuit is imperative to ensuring the reliability and accuracy of the unit. This monitoring is commonly accomplished with the use of a Current Viewing Transformer (CVT). In order to calibrate the CVT, the circuit is assembled with a Current Viewing Transformer (CVR) in addition to the CVT and the peak outputs compared. However, difficulties encountered with the use of CVRs make it desirable to eliminate the use of the CVR from the calibration process. This report describes a method for determining the calibration factor between the current throughput and the CVT voltage output in a capacitive discharge unit from the CVT ringdown data and values of initial voltage and capacitance of the circuit. Previous linear RLC fitting work for determining R, L, and C is adapted to return values of R, L, and the calibration factor, k. Separate solutions for underdamped and overdamped cases are presented and implemented on real circuit data using MathCad software with positive results. This technique may also offer a unique approach to self calibration of current measuring devices.

More Details

Human factors evaluation of the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

Hunter, Regina L.; Whitehurst, Hugh O.

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) is a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material for reuse, recycling, or ultimate disposal. Mixed waste may also be handled at the AHCF. A significant upgrade to a previous facility, the Temporary Hot Cell, was required to perform this mission. A checklist procedure was used to perform a human-factors evaluation of the AHCF modifications. This evaluation resulted in two recommendations, both of which have been implemented.

More Details

Sediment erosion and transport at the Rio Grande mouth : report for the National Border Technology Program and International Boundary and Water Commission

Roberts, Jesse D.; Chapin, D.M.; Buhalts, Randy B.

The mouth of the Rio Grande has become silted up, obstructing its flow into the Gulf of Mexico. This is problematic in that it has created extensive flooding. The purpose of this study was to determine the erosion and transport potential of the sediments obstructing the flow of the Rio Grande by employing a unique Mobile High Shear Stress flume developed by Sandia's Carlsbad Programs Group for the US Army Corps of Engineers. The flume measures in-situ sediment erosion properties at shear stresses ranging from normal flow to flood conditions for a variable depth sediment core. The flume is in a self-contained trailer that can be placed on site in the field. Erosion rates and sediment grain size distributions were determined from sediment samples collected in and around the obstruction and were subsequently used to characterize the erosion potential of the sediments under investigation.

More Details

Less-than-lethal "flashbang" diversionary device

Bender, Susan F.; Anderson, Heidi A.; Steyskal, Michele S.; Ingram, Brian I.; Melof, Brian M.; Fleming, Kevin J.; Broyles, Theresa A.; Mulligan, Edward J.; Covert, Timothy T.

Diversionary devices such as flashbang grenades are used in a wide variety of military and law-enforcement operations. They function to distract and/or incapacitate adversaries in scenarios ranging from hostage rescue to covert strategic paralysis operations. There are a number of disadvantages associated with currently available diversionary devices. Serious injuries and fatalities have resulted from their use both operationally and in training. Because safety is of paramount importance, desired improvements to these devices include protection against inadvertent initiation, the elimination of the production of high-velocity fragments, less damaging decibel output and increased light output. Sandia National Laboratories has developed a next-generation diversionary flash-bang device that will provide the end user with these enhanced safety features.

More Details

ASCI Red for dummies : a recipe book for easy use of the ASCI Red platform

McAllister, Paula L.; Sault, Allen G.; Kelly, Suzanne M.; Miller, Joel D.; Quinlan, Gerald F.

It has been recognized that documentation for new customers of ASCI Red, aka janus or the Intel Teraflops at Sandia National Laboratories, has been sadly lacking. This document has been prepared by a team of subject matter experts to fill that void and to provide a starting point for providing a similar document for ASCI Red Storm in the future. This document is intended for SNL users who need to jumpstart their use of Janus and Janus-s.

More Details

LDRD final report on light-powered nanovehicles

Shelnutt, John A.; Van Swol, Frank; Qiu, Yan Q.; Miller, James E.; Medforth, Craig J.; Singh, Anup K.

We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane. Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.

More Details

Ionization coefficient approach to modeling breakdown in nonuniform geometries

Warne, Larry K.; Jorgenson, Roy E.; Nicolaysen, Scott D.

This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.

More Details

Hybrid cryptography key management

Torgerson, Mark D.; Beaver, Cheryl L.; Collins, Michael J.; Draelos, Timothy J.; Gallup, Donald R.; Neumann, William D.

Wireless communication networks are highly resource-constrained; thus many security protocols which work in other settings may not be efficient enough for use in wireless environments. This report considers a variety of cryptographic techniques which enable secure, authenticated communication when resources such as processor speed, battery power, memory, and bandwidth are tightly limited.

More Details

Numerical predictions and experimental results of a dry bay fire environment

Black, Amalia R.; Gill, Walt; Suo-Anttila, Jill M.

The primary objective of the Safety and Survivability of Aircraft Initiative is to improve the safety and survivability of systems by using validated computational models to predict the hazard posed by a fire. To meet this need, computational model predictions and experimental data have been obtained to provide insight into the thermal environment inside an aircraft dry bay. The calculations were performed using the Vulcan fire code, and the experiments were completed using a specially designed full-scale fixture. The focus of this report is to present comparisons of the Vulcan results with experimental data for a selected test scenario and to assess the capability of the Vulcan fire field model to accurately predict dry bay fire scenarios. Also included is an assessment of the sensitivity of the fire model predictions to boundary condition distribution and grid resolution. To facilitate the comparison with experimental results, a brief description of the dry bay fire test fixture and a detailed specification of the geometry and boundary conditions are included. Overall, the Vulcan fire field model has shown the capability to predict the thermal hazard posed by a sustained pool fire within a dry bay compartment of an aircraft; although, more extensive experimental data and rigorous comparison are required for model validation.

More Details

Parallel tempering Monte Carlo in LAMMPS

Rintoul, Mark D.; Sears, Mark P.; Plimpton, Steven J.

We present here the details of the implementation of the parallel tempering Monte Carlo technique into a LAMMPS, a heavily used massively parallel molecular dynamics code at Sandia. This technique allows for many replicas of a system to be run at different simulation temperatures. At various points in the simulation, configurations can be swapped between different temperature environments and then continued. This allows for large regions of energy space to be sampled very quickly, and allows for minimum energy configurations to emerge in very complex systems, such as large biomolecular systems. By including this algorithm into an existing code, we immediately gain all of the previous work that had been put into LAMMPS, and allow this technique to quickly be available to the entire Sandia and international LAMMPS community. Finally, we present an example of this code applied to folding a small protein.

More Details

Global climate change and international security

Karas, Thomas H.

This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

More Details

Arrayed resonant subwavelength gratings : LDRD 38618 final report

Kemme, S.A.; Peters, D.W.; Wendt, J.R.; Carter, T.R.; Samora, S.; Hadley, G.R.; Warren, M.E.; Grotbeck, Carter L.

This report describes a passive, optical component called resonant subwavelength gratings (RSGs), which can be employed as one element in an RSG array. An RSG functions as an extremely narrow wavelength and angular band reflector, or mode selector. Theoretical studies predict that the infinite, laterally-extended RSG can reflect 100% of the resonant light while transmitting the balance of the other wavelengths. Experimental realization of these remarkable predictions has been impacted primarily by fabrication challenges. Even so, we will present large area (1.0mm) RSG reflectivity as high as 100.2%, normalized to deposited gold. Broad use of the RSG will only truly occur in an accessible micro-optical system. This program at Sandia is a normal incidence array configuration of RSGs where each array element resonates with a distinct wavelength to act as a dense array of wavelength- and mode-selective reflectors. Because of the array configuration, RSGs can be matched to an array of pixels, detectors, or chemical/biological cells for integrated optical sensing. Micro-optical system considerations impact the ideal, large area RSG performance by requiring finite extent devices and robust materials for the appropriate wavelength. Theoretical predictions and experimental measurements are presented that demonstrate the component response as a function of decreasing RSG aperture dimension and off-normal input angular incidence.

More Details

An estimate of Sandia resources for underground nuclear weapons effects testing

Bomber, Thomas M.; Zeuch, David H.

We conducted a study of the time and resources that would be required for Sandia National Laboratories to once again perform nuclear weapons effects experiments of the sort that it did in the past. The study is predicated on the assumptions that if underground nuclear weapons effects testing (UG/NWET) is ever resumed, (1) a brief series of tests (i.e., 2-3) would be done, and (2) all required resources other than those specific to SNL experiments would be provided by others. The questions that we sought to answer were: (1) What experiments would SNL want to do and why? (2) How much would they cost? (3) How long would they take to field? To answer these questions, we convened panels of subject matter experts first to identify five experiments representative of those that SNL has done in the past, and then to determine the costs and timelines to design, fabricate and field each of them. We found that it would cost $76M to $84M to do all five experiments, including 164 to 174 FTEs to conduct all five experiments in a single test. Planning and expenditures for some of the experiments needed to start as early as 5.5 years prior to zero-day, and some work would continue up to 2 years beyond the event. Using experienced personnel as mentors, SNL could probably field such experiments within the next five years. However, beyond that time frame, loss of personnel would place us in the position of essentially starting over.

More Details

Enabling technology for human collaboration

Doser, Adele D.; Merkle, Peter B.; Johnson, Curtis M.; Jones, Wendell J.

This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept study, and its observations are preliminary. Its main purpose is to demonstrate the potential for the tools developed here to improve the effectiveness of groups, and to suggest possible hypotheses for future exploration.

More Details

Algorithms for improved performance in cryptographic protocols

Beaver, Cheryl L.; Schroeppel, Richard C.

Public key cryptographic algorithms provide data authentication and non-repudiation for electronic transmissions. The mathematical nature of the algorithms, however, means they require a significant amount of computation, and encrypted messages and digital signatures possess high bandwidth. Accordingly, there are many environments (e.g. wireless, ad-hoc, remote sensing networks) where public-key requirements are prohibitive and cannot be used. The use of elliptic curves in public-key computations has provided a means by which computations and bandwidth can be somewhat reduced. We report here on the research conducted in an LDRD aimed to find even more efficient algorithms and to make public-key cryptography available to a wider range of computing environments. We improved upon several algorithms, including one for which a patent has been applied. Further we discovered some new problems and relations on which future cryptographic algorithms may be based.

More Details

Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: Coupling between local retinal and larger scale conformational change

Journal of Molecular Biology

Crozier, Paul C.; Stevens, Mark J.; Forrest, Lucy R.; Woolf, Thomas B.

The light-driven photocycle of rhodopsin begins the photoreceptor cascade that underlies visual response. In a sequence of events, the retinal covalently attached to the rhodopsin protein undergoes a conformational change that communicates local changes to a global conformational change throughout the whole protein. In turn, the large-scale protein change then activates G-proteins and signal amplification throughout the cell. The nature of this change, involving a coupling between a local process and larger changes throughout the protein, may be important for many membrane proteins. In addition, functional work has shown that this coupling occurs with different efficiency in different lipid settings. To begin to understand the nature of the efficiency of this coupling in different lipid settings, we present a molecular dynamics study of rhodopsin in an explicit dioleoyl-phosphatidylcholine bilayer. Our system was simulated for 40ns and provides insights into the very early events of the visual cascade, before the full transition and activation have occurred. In particular, we see an event near 10ns that begins with a change in hydrogen bonding near the retinal and that leads through a series of coupled changes to a shift in helical tilt. This type of event, though rare on the molecular dynamics time-scale, could be an important clue to the types of coupling that occur between local and large-scale conformational change in many membrane proteins. © 2003 Elsevier Ltd. All rights reserved.

More Details

Configurations, energies, and thermodynamics of the neutral MgH complex in GaN

Journal of Applied Physics

Wright, Alan F.; Myers, S.M.

A study was performed on the atomic configurations corresponding to local-energy minima for the neutral MgH complex in wurtzite GaN. The density-functional theory and the generalized-gradient approximation for exchange and correlation were used for the identification. The results showed that the dominant configuration consisted of H at an antibonding site of a N neighbor of the substitutional Mg, and the Mg-N and N-H bonds were nearly aligned.

More Details

Convergence of a balancing domain decomposition by constraints and energy minimization

Numerical Linear Algebra with Applications

Dohrmann, Clark R.

A convergence theory is presented for a substructuring preconditioner based on constrained energy minimization concepts. The substructure spaces consist of local functions with zero values of the constraints, while the coarse space consists of minimal energy functions with the constraint values continuous across substructure interfaces. In applications, the constraints include values at comers and optionally averages on edges and faces. The preconditioner is reformulated as an additive Schwarz method and analysed by building on existing results for balancing domain decomposition. The main result is a bound on the condition number based on inequalities involving the matrices of the preconditioner. Estimates of the form C(1 + log 2(H/h)) are obtained under the standard assumptions of substructuring theory. Computational results demonstrating the performance of method are included. Published in 2003 by John Wiley & Sons, Ltd.

More Details

Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities

Larese, Kathleen C.; Moore, Robert C.; Hasan, Ahmed H.

A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

More Details

Developing close combat behaviors for simulated soldiers using genetic programming techniques

Schaller, Mark J.; Pryor, Richard J.

Genetic programming is a powerful methodology for automatically producing solutions to problems in a variety of domains. It has been used successfully to develop behaviors for RoboCup soccer players and simple combat agents. We will attempt to use genetic programming to solve a problem in the domain of strategic combat, keeping in mind the end goal of developing sophisticated behaviors for compound defense and infiltration. The simplified problem at hand is that of two armed agents in a small room, containing obstacles, fighting against each other for survival. The base case and three changes are considered: a memory of positions using stacks, context-dependent genetic programming, and strongly typed genetic programming. Our work demonstrates slight improvements from the first two techniques, and no significant improvement from the last.

More Details

Preliminary uncertainty and sensitivity analysis for basic transport parameters at the Horonobe Site, Hokkaido, Japan

James, Scott C.; Zimmerman, Dean A.

Incorporating results from a previously developed finite element model, an uncertainty and parameter sensitivity analysis was conducted using preliminary site-specific data from Horonobe, Japan (data available from five boreholes as of 2003). Latin Hypercube Sampling was used to draw random parameter values from the site-specific measured, or approximated, physicochemical uncertainty distributions. Using pathlengths and groundwater velocities extracted from the three-dimensional, finite element flow and particle tracking model, breakthrough curves for multiple realizations were calculated with the semi-analytical, one-dimensional, multirate transport code, STAMMT-L. A stepwise linear regression analysis using the 5, 50, and 95% breakthrough times as the dependent variables and LHS sampled site physicochemical parameters as the independent variables was used to perform a sensitivity analysis. Results indicate that the distribution coefficients and hydraulic conductivities are the parameters responsible for most of the variation among simulated breakthrough times. This suggests that researchers and data collectors at the Horonobe site should focus on accurately assessing these parameters and quantifying their uncertainty. Because the Horonobe Underground Research Laboratory is in an early phase of its development, this work should be considered as a first step toward an integration of uncertainty and sensitivity analyses with decision analysis.

More Details

A perturbation expansion approach to solving the electromagnetic induction problem in three dimensions

Natek, Nancy H.; Weiss, Chester J.

We address the electromagnetic induction problem for fully 3D geologic media and present a solution to the governing Maxwell equations based on a power series expansion. The coefficients in the series are computed using the adjoint method assuming an underlying homogeneous reference model. These solutions are available analytically for point dipole source terms and lead to rapid calculation of the expansion coefficients. First order solutions are presented for a model study in petroleum geophysics composed of a multi-component induction sonde proximal to a fault within a compartmentalized hydrocarbon reservoir.

More Details

Results of external review Sandia National Laboratories microelectronics and photonics program (October 2002)

Myers, David R.

The US Department of Energy requires a periodic 'self assessment' of Sandia's Microsystems Program. An external panel review of this program is held approximately every 18 months, and the report from the external review panel serves as the basis for the DOE 'self assessment.' The review for this fiscal year was held on September 30-October 1, 2002 at Sandia National Laboratories, Albuquerque, NM. The panel was comprised of experts in the fields of microelectronics, photonics and microsystems from universities, industry and other Government agencies. A complete list of the panel members is shown as Appendix A to the attached report. The review assesses four areas: relevance to national needs and agency mission; quality of science technology and engineering; performance in the operation of a major facility; and program performance management and planning. Relevance to national needs and agency mission was rated as 'outstanding.' The quality of science, technology, and engineering was rated as 'outstanding.' Operation of a major facility was noted as 'outstanding,' while the category of program performance, management, and planning was rated as 'outstanding.' Sandia's Microsystems Program received an overall rating of 'outstanding' [the highest possible rating]. The attached report was prepared by the panel in a format requested by Sandia to conform with the performance criteria for the DOE self assessment.

More Details

Experimental optimization of the FireFly 600 photovoltaic off-grid system

King, David L.; Hund, Thomas D.; Boyson, William E.; Ralph, Mark E.

A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.

More Details

SWEIS annual review - CY2002 : a comparison of CY2002 operations to projections included in the site-wide environmental impact statement for continued operation of Sandia National Laboratories/New Mexico

Guerrero, Joseph V.; Bayliss, Linda S.; Catechis, Christopher S.; Bailey-White, Brenda E.

The SNL/NM CY2002 SWEIS Annual Review discusses changes in facilities and facility operations that have occurred in selected and notable facilities since source data were collected for the SNL/NM SWEIS (DOE/EIS-0281). The following information is presented: {sm_bullet} An updated overview of SNL/NM selected and notable facilities and infrastructure capabilities. {sm_bullet} An overview of SNL/NM environment, safety, and health programs, including summaries of the purpose, operations, activities, hazards, and hazard controls at relevant facilities and risk management methods for SNL/NM. {sm_bullet} Updated base year activities data, together with related inventories, material consumption, emissions, waste, and resource consumption. {sm_bullet} Appendices summarizing activities and related hazards at SNL/NM individual special, general, and highbay laboratories, and chemical purchases.

More Details

Architectural requirements for the Red Storm computing system

Tomkins, James; Camp, William

This report is based on the Statement of Work (SOW) describing the various requirements for delivering 3 new supercomputer system to Sandia National Laboratories (Sandia) as part of the Department of Energy's (DOE) Accelerated Strategic Computing Initiative (ASCI) program. This system is named Red Storm and will be a distributed memory, massively parallel processor (MPP) machine built primarily out of commodity parts. The requirements presented here distill extensive architectural and design experience accumulated over a decade and a half of research, development and production operation of similar machines at Sandia. Red Storm will have an unusually high bandwidth, low latency interconnect, specially designed hardware and software reliability features, a light weight kernel compute node operating system and the ability to rapidly switch major sections of the machine between classified and unclassified computing environments. Particular attention has been paid to architectural balance in the design of Red Storm, and it is therefore expected to achieve an atypically high fraction of its peak speed of 41 TeraOPS on real scientific computing applications. In addition, Red Storm is designed to be upgradeable to many times this initial peak capability while still retaining appropriate balance in key design dimensions. Installation of the Red Storm computer system at Sandia's New Mexico site is planned for 2004, and it is expected that the system will be operated for a minimum of five years following installation.

More Details

Molecular-scale studies of single-channel membrane pores : final report

Burns, A.R.; Fleming, J.G.; Swartzentruber, Brian S.

We present our research results on membrane pores. The study was divided into two primary sections. The first involved the formation of protein pores in free-standing lipid bilayer membranes. The second involved the fabrication via surface micromachining techniques and subsequent testing of solid-state nanopores using the same characterization apparatus and procedures as that used for the protein pores. We were successful in our ability to form leak-free lipid bilayers, to detect the formation of single protein pores, and to monitor the translocation dynamics of individual homogeneous 100 base strands of DNA. Differences in translocation dynamics were observed when the base was switched from adenine to cytosine. The solid state pores (2-5 nm estimated) were fabricated in thin silicon nitride membranes. Testing of the solid sate pores indicated comparable currents for the same size protein pore with excellent noise and sensitivity. However, there were no conditions under which DNA translocation was observed. After considerable effort, we reached the unproven conclusion that multiple (<1 nm) pores were formed in the nitride membrane, thus explaining both the current sensitivity and the lack of DNA translocation blockages.

More Details

The Sandia petaflops planner

DeBenedictis, Erik

The Sandia Petaflops Planner is a tool for projecting the design and performance of parallel supercomputers into the future. The mathematical basis of these projections is the International Technology Roadmap for Semiconductors (ITRS, or a detailed version of Moore's Law) and DOE balance factors for supercomputer procurements. The planner is capable of various forms of scenario analysis, cost estimation, and technology analysis. The tool is described along with technology conclusions regarding PFLOPS-level supercomputers in the upcoming decade.

More Details

Xyce release and distribution management : version 1.2

Hutchinson, Scott A.; Williamson, C.M.

This document presents a high-level description of the Xyce {trademark} Parallel Electronic Simulator Release and Distribution Management Process. The purpose of this process is to standardize the manner in which all Xyce software products progress toward release and how releases are made available to customers. Rigorous Release Management will assure that Xyce releases are created in such a way that the elements comprising the release are traceable and the release itself is reproducible. Distribution Management describes what is to be done with a Xyce release that is eligible for distribution.

More Details

Views of wireless network systems

Duggan, David P.; Young, William F.

Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

More Details

Effect of mono- and multivalent salts on angle-dependent attractions between charged rods

Proposed for publication in Physical Review Letters.

Stevens, Mark J.

Using molecular dynamics simulations we examine the effective interactions between two like-charged rods as a function of angle and separation. In particular, we determine how the competing electrostatic repulsions and multivalent-ion-induced attractions depend upon concentrations of simple and multivalent salts. We find that with increasing multivalent salt, the stable configuration of two rods evolves from isolated rods to aggregated perpendicular rods to aggregated parallel rods; at sufficiently high concentration, additional multivalent salt reduces the attraction. Monovalent salt enhances the attraction near the onset of aggregation and reduces it at a higher concentration of multivalent salt.

More Details

Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C

Lee, Moo Y.; Montgomery, Stephen M.; Hofer, John H.; Zeuch, David H.

Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZT under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.

More Details

Assessing mesoscale material response under shock & isentropic compression via high-resolution line-imaging VISAR

Furnish, Michael D.; Trott, Wayne T.; Mason, Joshua M.; Podsednik, Jason P.; Reinhart, William D.; Hall, Clint A.

Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared two line-imaging VISAR systems capable of spatial resolution in the 10-20 micron range, at the Z and STAR facilities. We have applied this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in copper (two variations: 70 micron diameter hole in single-crystal copper) and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint. The instrument is capable of resolving details such as the volume and collapse history of a collapsing isolated pore.

More Details

Algorithmic support for commodity-based parallel computing systems

Leung, Vitus J.; Phillips, Cynthia A.

The Computational Plant or Cplant is a commodity-based distributed-memory supercomputer under development at Sandia National Laboratories. Distributed-memory supercomputers run many parallel programs simultaneously. Users submit their programs to a job queue. When a job is scheduled to run, it is assigned to a set of available processors. Job runtime depends not only on the number of processors but also on the particular set of processors assigned to it. Jobs should be allocated to localized clusters of processors to minimize communication costs and to avoid bandwidth contention caused by overlapping jobs. This report introduces new allocation strategies and performance metrics based on space-filling curves and one dimensional allocation strategies. These algorithms are general and simple. Preliminary simulations and Cplant experiments indicate that both space-filling curves and one-dimensional packing improve processor locality compared to the sorted free list strategy previously used on Cplant. These new allocation strategies are implemented in Release 2.0 of the Cplant System Software that was phased into the Cplant systems at Sandia by May 2002. Experimental results then demonstrated that the average number of communication hops between the processors allocated to a job strongly correlates with the job's completion time. This report also gives processor-allocation algorithms for minimizing the average number of communication hops between the assigned processors for grid architectures. The associated clustering problem is as follows: Given n points in {Re}d, find k points that minimize their average pairwise L{sub 1} distance. Exact and approximate algorithms are given for these optimization problems. One of these algorithms has been implemented on Cplant and will be included in Cplant System Software, Version 2.1, to be released. In more preliminary work, we suggest improvements to the scheduler separate from the allocator.

More Details

DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts

Shelnutt, John A.; Brinker, C.J.; Van Swol, Frank; Haddad, Raid E.; Medforth, Craig J.; Pereira, Eulalia P.; Singh, Anup K.

Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient conditions. The research is expected to lead to highly nanoengineered materials for catalysis mediated by platinum, palladium, and potentially other catalytically important metals. The nanostructures made also have potential applications in nanoelectronics, nanophotonics, and nanomagnetic systems. We also expect to develop a fundamental understanding of the uses and limitations of biomimetic photocatalysis as a means of producing metal and semiconductor nanostructures and nanomaterials. The work has already led to a relationship with InfraSUR LLC, a small business that is developing our photocatalytic metal reduction processes for environmental remediation. This work also contributes to science education at a predominantly Hispanic and Native American university.

More Details

Shock analysis using the multi point velocimeter (VISAR)

Fleming, Kevin J.; Broyles, Theresa A.

The velocity of short duration high-amplitude shock waves and high-speed motion created by sources such as explosives, high energy plasmas and other rapid-acceleration devices are difficult to measure due to their fast reaction times. One measurement tool frequently used is VISAR (Velocity Interferometer System for Any Reflector). VISAR is an optical-based system that utilizes Doppler interferometry techniques to measure the complete time-history of the motion of a surface. This technique is gaining worldwide acceptance as the tool of choice for measurement of shock phenomena. However, one limitation of the single point VISAR is that it measures only one point on a surface. The new Multi Point VISAR remedies the single point VISAR's limitation by using multiple fiber optics and sensors to send and receive information. Upcoming programs that need analysis of large diameter flyers prompted the concept and design of a single cavity-multiple fiber optic Multi Point VISAR (MPV). Preliminary designs and the testing of a single cavity prototype in 1996 supported the theory of compact fiber optic bundle systems for development into the Multi Point VISAR. The new MPV was used to evaluate the performance of two components; a piezo-driven plane wave generating isolator, and a slim-loop ferroelectric (SFE)-type fireset.

More Details

The adequacy of current import and export controls on sealed radioactive sources

Cochran, John R.; Longley, Susan W.

Millions of sealed radioactive sources (SRSs) are being used for a wide variety of beneficial purposes throughout the world. Security experts are now concerned that these beneficial SRSs could be used in a radiological dispersion device to terrorize and disrupt society. The greatest safety and security threat is from those highly radioactive Category 1 and 2 SRSs. Without adequate controls, it may be relatively easy to legally purchase a Category 1 or 2 SRS on the international market under false pretenses. Additionally, during transfer, SRSs are particularly susceptible to theft since the sources are in a shielded and mobile configuration, transportation routes are predictable, and shipments may not be adequately guarded. To determine if government controls on SRS are adequate, this study was commissioned to review the current SRS import and export controls of six countries. Canada, the Russian Federation, and South Africa were selected as the exporting countries, and Egypt, the Philippines, and the United States were selected as importing countries. A detailed review of the controls in each country is presented. The authors found that Canada and Russia are major exporters, and are exporting highly radioactive SRSs without first determining if the recipient is authorized by the receiving country to own and use the SRSs. Available evidence was used to estimate that on average there are tens to possibly hundreds of intercountry transfers of highly radioactive SRSs each day. Based on these and other findings, this reports recommends stronger controls on the export and import of highly radioactive SRSs.

More Details

Equations of state for Be, Ni, W, and Au

Hertel, Eugene S.; Kerley, Gerald I.

The PANDA code is used to construct tabular equations of state (EOS) for four metals-- beryllium, nickel, tungsten and gold. Each EOS includes melting, vaporization, and thermal electronic excitation. Separate EOS tables are constructed for the solid and fluid phases, and the PANDA phase transition model is used to construct a multiphase EOS table for each metal. These new EOS tables are available for use with the CTH code and other hydrocodes that access the CTH database.

More Details

Equations of state for titanium and Ti6A14V alloy

Hertel, Eugene S.; Kerley, Gerald I.

The PANDA code is used to build tabular equations of state (EOS) for titanium and the alloy Ti4Al6V. Each EOS includes solid-solid phase transitions, melting, vaporization, and thermal electronic excitation. Separate EOS tables are constructed for the solid and fluid phases, and the PANDA phase transition model is used to construct a single multiphase table. The model explains a number of interesting features seen in the Hugoniot data, including an anomalous increase in shock velocity, recently observed near 200 GPa in Ti6Al4V. These new EOS tables are available for use with the CTH code and other hydrocodes that access the CTH database.

More Details

Algorithm development for Prognostics and Health Management (PHM)

Swiler, Laura P.; Campbell, James E.; Lowder, Kelly S.; Doser, Adele D.

This report summarizes the results of a three-year LDRD project on prognostics and health management. System failure over some future time interval (an alternative definition is the capability to predict the remaining useful life of a system). Prognostics are integrated with health monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that optimizes maintenance actions and results in higher availability at a lower cost. Our goal in this research was to develop PHM tools that could be applied to a wide variety of equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, etc.) and require minimal customization to move from one system to the next. Thus, our approach was to develop a toolkit of reusable software objects/components and architecture for their use. We have developed two software tools: an Evidence Engine and a Consequence Engine. The Evidence Engine integrates information from a variety of sources in order to take into account all the evidence that impacts a prognosis for system health. The Evidence Engine has the capability for feature extraction, trend detection, information fusion through Bayesian Belief Networks (BBN), and estimation of remaining useful life. The Consequence Engine involves algorithms to analyze the consequences of various maintenance actions. The Consequence Engine takes as input a maintenance and use schedule, spares information, and time-to-failure data on components, then generates maintenance and failure events, and evaluates performance measures such as equipment availability, mission capable rate, time to failure, and cost. This report summarizes the capabilities we have developed, describes the approach and architecture of the two engines, and provides examples of their use. 'Prognostics' refers to the capability to predict the probability of

More Details

Investigation of oil injection into brine for the strategic petroleum reserve : hydrodynamics experiments with simulant liquids

Torczynski, J.R.; O'Hern, Timothy J.; Barney, Jeremy B.; Castaneda, Jaime N.; Cote, Raymond O.

An experimental program is being conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal is to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. This report documents the first stage of the program, in which simulant liquids are used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward from a tube into brine. The experiment consists of a large transparent vessel that is a scale model of the proposed oil injection process at the SPR. An oil layer is floated on top of a brine layer. Silicon oil (Dow Corning 200{reg_sign} Fluid, 5 cSt) is used as the simulant for crude oil to allow visualization of the flow and to avoid flammability and related concerns. Sodium nitrate solution is used as the simulant for brine because it is not corrosive and it can match the density ratio between brine and crude oil. The oil is injected downward through a tube into the brine at a prescribed depth below the oil-brine interface. Flow rates are determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface is deflected upward by the impinging oil-brine plume. Two different diameter injection tubes were used (1/2-inch and 1-inch OD) to vary the scaling. Use of the 1-inch injection tube also assured that turbulent pipe flow was achieved, which was questionable for lower flow rates in the 1/2-inch tube. In addition, a 1/2-inch J-tube was used to direct the buoyant jet upwards rather than downwards to determine whether flow redirection could substantially reduce the oil-plume size and the oil-droplet residence time in the brine. Reductions of these quantities would inhibit emulsion formation by limiting the contact between the oil and the brine. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern. Image-processing analyses were performed to quantify the penetration depth of the oil jet, the width of the jet, and the deflection of the interface. The measured penetration depths are shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model provided a good estimate of the measured values for the 1-inch injection tube but overpredicted the penetration depth for the 1/2-inch injection tube. Adding a virtual origin term would improve the prediction for the 1/2-inch tube for low to nominal injection flow rates but could not capture the rollover seen at high injection flow rates. As expected, the J-tube yielded a much narrower plume because the flow was directed upward, unlike the downward-oriented straight-tube cases where the plume had to reverse direction, leading to a much wider effective plume area. Larger surface deflections were caused by the narrower plume emitted from the J-tube. Although velocity was not measured in these experiments, the video data showed that the J-tube plume was clearly faster than those emitted from the downward-oriented tubes. These results indicate that oil injection tube modifications could inhibit emulsion formation by reducing the amount of contact (both time and area) between the oil and the brine. Future studies will employ crude oil, saturated brine, and interfacial solids (sludge) from actual SPR caverns.

More Details

Chem-prep PZT95/5 for neutron generator applications : the effect of pore former type and density on the depoling behavior of chemically prepared PZT 95/5 ceramics

Yang, Pin Y.; Moore, Roger H.; Lockwood, Steven J.; Tuttle, Bruce T.; Voigt, James A.; Scofield, Timothy W.

The hydrostatically induced ferroelectric(FE)-to-antiferroelectric(AFE) phase transformation for chemically prepared niobium modified PZT 95/5 ceramics was studied as a function of density and pore former type (Lucite or Avicel). Special attention was placed on the effect of different pore formers on the charge release behavior associated with the FE-to-AFE phase transformation. Within the same density range (7.26 g/cm3 to 7.44 g/cm3), results showed that ceramics prepared with Lucite pore former exhibit a higher bulk modulus and a sharper polarization release behavior than those prepared with Avicel. In addition, the average transformation pressure was 10.7% greater and the amount of polarization released was 2.1% higher for ceramics with Lucite pore former. The increased transformation pressure was attributed to the increase of bulk modulus associated with Lucite pore former. Data indicated that a minimum volumetric transformational strain of -0.42% was required to trigger the hydrostatically induced FE-to-AFE phase transformation. This work has important implications for increasing the high temperature charge output for neutron generator power supply units.

More Details

Data encryption standard ASIC design and development report

Witzke, Edward L.; Pierson, Lyndon G.; Robertson, Perry J.

This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATM or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.

More Details

Self-assembly of polymers in confined geometrics

Curro, John G.

Athermal, tethered chains are modeled with Density Functional (DFT) theory for both the explicit solvent and continuum solvent cases. The structure of DFT is shown to reduce to Self-Consistent-Field (SCF) theory in the incompressible limit where there is symmetry between solvent and monomer, and to Single-Chain-Mean-Field (SCMF) theory in the continuum solvent limit. We show that by careful selection of the reference and ideal systems in DFT theory, self-consistent numerical solutions can be obtained, thereby avoiding the single chain Monte Carlo simulation in SCMF theory. On long length scales, excellent agreement is seen between the simplified DFT theory and Molecular Dynamics simulations of both continuum solvents and explicit-molecule solvents. In order to describe the structure of the polymer and solvent near the surface it is necessary to include compressibility effects and the nonlocality of the field.

More Details

Detection and reconstruction of error control codes for engineered and biological regulatory systems

May, Elebeoba E.; Johnston, Anna M.; Hart, William E.; Watson, Jean-Paul W.; Pryor, Richard J.; Rintoul, Mark D.

A fundamental challenge for all communication systems, engineered or living, is the problem of achieving efficient, secure, and error-free communication over noisy channels. Information theoretic principals have been used to develop effective coding theory algorithms to successfully transmit information in engineering systems. Living systems also successfully transmit biological information through genetic processes such as replication, transcription, and translation, where the genome of an organism is the contents of the transmission. Decoding of received bit streams is fairly straightforward when the channel encoding algorithms are efficient and known. If the encoding scheme is unknown or part of the data is missing or intercepted, how would one design a viable decoder for the received transmission? For such systems blind reconstruction of the encoding/decoding system would be a vital step in recovering the original message. Communication engineers may not frequently encounter this situation, but for computational biologists and biotechnologist this is an immediate challenge. The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder system for engineered and biological data. Building on Sandia's strengths in discrete mathematics, algorithms, and communication theory, we use linear programming and will use evolutionary computing techniques to construct efficient algorithms for modeling the coding system for minimally errored engineered data stream and genomic regulatory DNA and RNA sequences. The objective for the initial phase of this project is to construct solid parallels between biological literature and fundamental elements of communication theory. In this light, the milestones for FY2003 were focused on defining genetic channel characteristics and providing an initial approximation for key parameters, including coding rate, memory length, and minimum distance values. A secondary objective addressed the question of determining similar parameters for a received, noisy, error-control encoded data set. In addition to these goals, we initiated exploration of algorithmic approaches to determine if a data set could be approximated with an error-control code and performed initial investigations into optimization based methodologies for extracting the encoding algorithm given the coding rate of an encoded noise-free and noisy data stream.

More Details

Ceramic packaging for MEMS-based microsystems

Proceedings of SPIE - The International Society for Optical Engineering

Custer, Jonathan S.

Ceramic packaging is crucial to the development of MEMS-based microsystems. It is an enabling technology, giving the ability to build complex packages that combine MEMS, electronics, optics, and sensors in a compact volume. In addition, ceramic hermetic packaging has a long history of providing protection to the enclosed devices, even under harsh conditions. These capabilities are being used at Sandia to package complex, MEMS-based microsystems. Looking ahead, ceramic packaging is developing new capabilities important to microsystems, such as the addition of fluidic channels. These developments will make ceramic packaging a viable option for a wide variety of compact, highly integrated microsystems. However, MEMS, particularly surface micromachines, have new reliability concerns that ceramic packaging needs to address. One example is stiction, where small amounts of water can generate surface forces large enough to cause parts to stick together. This demonstrates the need to measure and control the internal environment with greater precision than has been required in the past. Despite these challenges, it is clear that ceramic packaging will be a key technology for complex microsystems in the future.

More Details

Development of integrated high value resistors on novel substrates

Proceedings of SPIE - The International Society for Optical Engineering

Tuttle, Bruce T.; Williams, David P.; Olson, Walter R.; Clem, Paul G.; King, Bruce; Renn, Michael

Development of next generation electronics for pulse discharge systems requires miniaturization and integration of high voltage, high value resistors (greater than 100 megohms) with novel substrate materials. These material advances are needed for improved reliability, robustness and performance. In this study, high sheet resistance inks of 1 megohm per square were evaluated to reduce overall electrical system volume. We investigated a deposition process that permits co-sintering of high-sheet-resistance inks with a variety of different material substrates. Our approach combines the direct write process of aerosol jetting with laser sintering and conventional thermal sintering processes. One advantage of aerosol jetting is that high quality, fine line depositions can be achieved on a wide variety of substrates. When combined with laser sintering, the aerosol jetting approach has the capability to deposit resistors at any location on a substrate and to additively trim the resistors to specific values. We have demonstrated a 400 times reduction in overall resistor volume compared to commercial chip resistors using the above process techniques. Resistors that exhibited this volumetric efficiency were fabricated by 850°C thermal processing on alumina substrates and by 0.1W laser sintering on Kapton substrates.

More Details

Least squares support vector machines for direction of arrival estimation

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Rohwer, Judd A.; Abdallah, Chaouki T.; Christodoulou, Christos G.

A multiclass LS-SVM architecture for DOA estimation as applied to a CDMA cellular system is presented. As such, simulation results showed a high degree of accuracy, as related to the DOA classes and proved that the LS-SVM DDAG system has a wide range of performance capabilities. The broad range of the research in machine learning based DOA estimation includes multilabel and multiclass classification, classification accuracy, error control and validation, kernel selection, estimation of signal subspace dimension, and overall performance characterization of the LS-SVM DDAG DOA estimation algorithm.

More Details

Prototyping Faithful Execution in a Java virtual machine

Campbell, Philip L.; Pierson, Lyndon G.; Tarman, Thomas D.

This report presents the implementation of a stateless scheme for Faithful Execution, the design for which is presented in a companion report, ''Principles of Faithful Execution in the Implementation of Trusted Objects'' (SAND 2003-2328). We added a simple cryptographic capability to an already simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level implementation of Faithful Execution. The extended class loader and JVM we refer to collectively as the Sandia Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable exploration of more sophisticated techniques which we intend to implement in hardware.

More Details

Principles of Faithful Execution in the implementation of trusted objects

Campbell, Philip L.; Pierson, Lyndon G.; Tarman, Thomas D.

We begin with the following definitions: Definition: A trusted volume is the computing machinery (including communication lines) within which data is assumed to be physically protected from an adversary. A trusted volume provides both integrity and privacy. Definition: Program integrity consists of the protection necessary to enable the detection of changes in the bits comprising a program as specified by the developer, for the entire time that the program is outside a trusted volume. For ease of discussion we consider program integrity to be the aggregation of two elements: instruction integrity (detection of changes in the bits within an instruction or block of instructions), and sequence integrity (detection of changes in the locations of instructions within a program). Definition: Faithful Execution (FE) is a type of software protection that begins when the software leaves the control of the developer and ends within the trusted volume of a target processor. That is, FE provides program integrity, even while the program is in execution. (As we will show below, FE schemes are a function of trusted volume size.) FE is a necessary quality for computing. Without it we cannot trust computations. In the early days of computing FE came for free since the software never left a trusted volume. At that time the execution environment was the same as the development environment. In some circles that environment was referred to as a ''closed shop:'' all of the software that was used there was developed there. When an organization bought a large computer from a vendor the organization would run its own operating system on that computer, use only its own editors, only its own compilers, only its own debuggers, and so on. However, with the continuing maturity of computing technology, FE becomes increasingly difficult to achieve

More Details

Calendar year 2002 annual site environmental report for Sandia National Laboratories, New Mexico

Salinas, Stephanie A.; Koss, Susan I.; Sanchez, Rebecca V.; Mayeux, Lucie E.

Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2002. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

More Details

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

Salinas, Stephanie A.; Koss, Susan I.; Sanchez, Rebecca V.; Mayeux, Lucie E.

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

More Details

Avoiding spurious submovement decompositions: A globally optimal algorithm

Biological Cybernetics

Rohrer, Brandon R.

Evidence for the existence of discrete sub-movements underlying continuous human movement has motivated many attempts to "extract" them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

More Details

Natural language processing-based COTS software and related technologies survey

Eaton, Shelley M.; Stickland, Michael S.; Conrad, Gregory N.

More Details

Diagnostics development plan for ZR

Hanson, David L.

The Z Refurbishment (ZR) Project is a program to upgrade the Z machine at SNL with modern durable pulsed power technology, providing additional shot capacity and improved reliability as well as advanced capabilities for both pulsed x-ray production and high pressure generation. The development of enhanced diagnostic capabilities is an essential requirement for ZR to meet critical mission needs. This report presents a comprehensive plan for diagnostic instrument and infrastructure development for the first few years of ZR operation. The focus of the plan is on: (1) developing diagnostic instruments with high spatial and temporal resolution, capable of low noise operation and survival in the severe EMP, bremsstrahlung, and blast environments of ZR; and (2) providing diagnostic infrastructure improvements, including reduced diagnostic trigger signal jitter, more and flexible diagnostic line-of-sight access, and the capability for efficient exchange of diagnostics with other laboratories. This diagnostic plan is the first step in an extended process to provide enhanced diagnostic capabilities for ZR to meet the diverse programmatic needs of a broad range of defense, energy, and general science programs of an international user community into the next decade.

More Details

A network architecture for Petaflops supercomputers

DeBenedictis, Erik

If we are to build a supercomputer with a speed of 10{sup 15} floating operations per second (1 PetaFLOPS), interconnect technology will need to be improved considerably over what it is today. In this report, we explore one possible interconnect design for such a network. The guiding principle in this design is the optimization of all components for the finiteness of the speed of light. To achieve a linear speedup in time over well-tested supercomputers of todays' designs will require scaling up of processor power and bandwidth and scaling down of latency. Latency scaling is the most challenging: it requires a 100 ns user-to-user latency for messages traveling the full diameter of the machine. To meet this constraint requires simultaneously minimizing wire length through 3D packaging, new low-latency electrical signaling mechanisms, extremely fast routers, and new network interfaces. In this report, we outline approaches and implementations that will meet the requirements when implemented as a system. No technology breakthroughs are required.

More Details

Biosecurity reference : CFR-listed agent and toxin summaries

Barnett, Natalie B.

This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, 'Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,' and 42 CFR 73, 'Possession, Use, and Transfer of Select Agents and Toxins.' Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health.

More Details

Composition of the essential oils from Rocky Mountain juniper (Juniperus scopulorum), Big sagebrush (Artemisia tridentata), and White Sage (Salvia apiana)

Borek, Theodore T.; Hochrein, James M.; Irwin, Adriane N.

The essential oils of Juniperus scopulorum, Artemisia tridentata, and Salvia apiana obtained by steam extraction were analyzed by GC-MS and GC-FID. For J. scopulorum, twenty-five compounds were identified which accounts for 92.43% of the oil. The primary constituents were sabinene (49.91%), {alpha}-terpinene (9.95%), and 4-terpineol (6.79%). For A. tridentata, twenty compounds were identified which accounts for 84.32% of the oil. The primary constituents were camphor (28.63%), camphene (16.88%), and 1,8-cineole (13.23%). For S. apiana, fourteen compounds were identified which accounts for 96.76% of the oil. The primary component was 1,8-cineole (60.65%).

More Details

Dual mode use requirements analysis for the institutional cluster

Leland, Robert

This paper analyzes what additional costs would be incurred in supporting dual-mode, i.e. both classified and unclassified use of the Institutional Computing (IC) hardware. The following five options are considered: periods processing in which a fraction of the system alternates in time between classified and unclassified modes, static split in which the system is constructed as a set of smaller clusters which remain in one mode or the other, re-configurable split in which the system is constructed in a split fashion but a mechanism is provided to reconfigure it very infrequently, red/black switching in which a mechanism is provided to switch sections of the system between modes frequently, and complementary operation in which parts of the system are operated entirely in one mode at one geographical site and entirely in the other mode at the other geographical site and other systems are repartitioned to balance work load. These options are evaluated against eleven criteria such as disk storage costs, distance computing costs, reductions in capability and capacity as a result of various factors etc. The evaluation is both qualitative and quantitative, and is captured in various summary tables.

More Details
Results 87101–87200 of 96,771
Results 87101–87200 of 96,771