Publications

Results 1–100 of 206

Search results

Jump to search filters

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Fielding and analyzing performance of a prototype high voltage output gas switch for Saturn

Savage, Mark E.; Austin, Kevin N.; Grabowski, Theodore C.; McLane, Matthew M.

Timing spread between the thirty-six Saturn modules affects peak electrical power delivered to the Bremsstrahlung diode and can affect vacuum power flow and impedance behavior of the load. To reduce the module spread, a new megavolt gas-insulated closing switch was developed employing design techniques developed for the Z-machine laser triggered switches while retaining Saturn’s simpler electrical triggering. Two modules were temporarily outfitted with the new switches and used separately into local resistive loads (instead of the usual Saturn electron beam load). A reliable operating point and switch time jitter at that point were the goals of the experiments. The target switch reliability is less than one pre-fire in one thousand switch-shots, and a timing standard deviation of 4 nanoseconds. The switches were able to meet both requirements but the number of tests at the chosen point are limited.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, Patrick K.; Schmit, Paul S.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael M.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn L.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Robertson, Grafton K.; Savage, Mark E.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David A.; Weis, Matthew R.; Myers, Clayton E.; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael M.; Knapp, Patrick K.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary W.; Fein, Jeffrey R.; Geissel, Matthias G.; Glinsky, Michael E.; Laros, James H.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul S.; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas M.; Peterson, Kyle J.; Rochau, G.A.; Sinars, Daniel S.

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

EXPERIMENTAL RESULTS FROM THE 1.2 MA 2.2 m DIAMETER LINEAR TRANSFORMER DRIVER AT SANDIA NATIONAL LABS

Douglass, Jonathan D.; Hutsel, Brian T.; Leckbee, Joshua J.; Stoltzfus, Brian S.; Wisher, Matthew L.; Savage, Mark E.; Stygar, William A.; Breden, E.W.; Calhoun, Jacob D.; Cuneo, M.E.; Jaramillo, Deanna M.; Johns, Owen J.; Jones, Michael J.; Lucero, Diego J.; Moore, James M.; Sceiford, Matthew S.; Kiefer, Mark L.; Mulville, Thomas D.; Sullivan, Michael A.; Hohlfelder, Robert J.

Abstract not provided.

100 GW linear transformer driver cavity: Design, simulations, and performance 100 GW LINEAR TRANSFORMER DRIVER CAVITY: ⋯ J. D. DOUGLASS et al

Physical Review Accelerators and Beams

Douglass, Jonathan D.; Hutsel, Brian T.; Leckbee, Joshua L.; Mulville, Thomas D.; Stoltzfus, Brian S.; Savage, Mark E.; Breden, E.W.; Calhoun, Jacob D.; Cuneo, M.E.; De Smet, Dennis J.; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen J.; Lombrozo, Aaron C.; Lucero, Diego J.; Moore, James M.; Porter, John L.; Radovich, S.; Sceiford, Matthew S.; Sullivan, Michael A.; Walker, Charles A.; Yazzie, Nicole T.

Herein we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 "bricks." Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, Patrick K.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David A.; Bliss, David E.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew; Peterson, Kyle J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens S.; Schmit, Paul S.; Shipley, Gabriel A.; Sinars, Daniel S.; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos A.; Bennett, Nichelle L.; Bliss, David E.; Laros, James H.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew; Patel, Sonal P.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David V.; Vandevender, Pace; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale R.; Rochau, G.A.; Savage, Mark E.; Stygar, William; White, William M.; Sinars, Daniel S.; Cuneo, M.E.

Abstract not provided.

Estimates of Saturn Radiation Output Scaling versus Machine Design Parameters

2018 16th International Conference on Megagauss Magnetic Field Generation and Related Topics, MEGAGAUSS 2018 - Proceedings

Struve, Kenneth W.; Grabowski, Theodore C.; Joseph, Nathan R.; Oliver, Bryan V.; Savage, Mark E.; Ulmen, Benjamin A.; Vandevender, Pace J.

Saturn is a short-pulse ( 40 ns FWHM) x-ray generator capable of delivering up 10 MA into a bremsstrahlung diode to yield up 5 × 10^12 rad/s (Si) per shot at an energy of 1 to 2 MeV. With the machine now over 30 years old it is necessary to rebuild and replace many components, upgrade controls and diagnostics, design for more reliability and reproducibility, and, as possible upgrade the accelerator to produce more current at a low voltage ( 1 MV or lower). Thus it has been necessary to reevaluate machine design parameters. The machine is modeled as a simple LR circuit driven with an equivalent a sine-squared drive waveform as peak voltage, drive impedance, and vacuum inductance are varied. Each variation has implications for vacuum insulator voltage, diode voltage, diode impedance, and radiation output. For purposes of this study, radiation is scaled as the diode current times the diode voltage raised to the 2.7 power. Results of parameter scans are presented and used to develop a design that optimizes radiation output. Results indicate that to maintain the existing short pulse length of the machine but to increase output it is most beneficial to operate at an even higher impedance than originally designed. Also discussed are critical improvements that need to be made.

More Details

Measurements of Z Electrode Temperatures Using Absolutely Calibrated Streaked Visible Spectroscopy Systems and Avalanche Photodiodes

IEEE International Conference on Plasma Science

Patel, Sonal P.; Johnston, Mark D.; Bliss, David E.; Laity, George R.; Gomez, Matthew R.; Falcon, Ross E.; Scoglietti, Daniel S.; Macrunnels, K.A.; Savage, Mark E.; Cuneo, M.E.

Absolute calibration of streaked visible spectroscopy systems has been performed at Z-machine at Sandia National Labs in order to determine temperatures of electrode surfaces during the current pulse. The ability to calibrate the full system, including all fiber optic runs and probes is crucial to understanding errors in the calibration process. The calibration procedure involves imaging a blackbody light source, with a known spectral radiance which is coupled to an integrating sphere. This source is streaked slowly over a few ns using Sydor streak cameras. The slow sweep is converted to a 100-500ns sweep by imaging a bright light source on both sweep rates, and obtaining wavelength and time dependent correction curves. Any broadband light source or several laser lines of differing wavelengths can be used for this correction. This technique has yielded temperature estimates of several eV in the Z convolute.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David A.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias G.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, Patrick K.; Laity, George R.; Martin, Matthew; Nagayama, Taisuke N.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul S.; Schwarz, Jens S.; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund Y.; Cuneo, M.E.; Jones, Brent M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.; Stygar, William A.

Abstract not provided.

Pulsed power performance of the Z machine: Ten years after the upgrade

IEEE International Pulsed Power Conference

Savage, Mark E.; Austin, Kevin N.; Hutsel, Brian T.; Kamm, Ryan J.; McKee, George R.; Stygar, William A.; Wakeland, P.; Wemple, Nathan R.; White, William M.

The Z machine is a 36-module, multi-megavolt, low impedance magnetic pressure driver for high-energy-density physics experiments. In 2007, a major re-build doubled the stored energy and increased the peak current capability of Z. The upgraded system routinely drives 27 MA through low inductance dynamic loads with 110 nanosecond time to peak current. The Z pulsed power system is expected to be prepared for a full-energy experiment every day, with a small (<2%) chance of pulsed power system failure, and ±2 ns timing precision. To maintain that schedule with 20 MJ stored, it becomes essential to minimize failures that can damage hardware. We will show the results of several improvements made to the system that reduce spurious breakdowns and improve precision. In most cases, controlling electric fields is key, both to reliable insulation and to precision switching. The upgraded Z pulsed power system was originally intended to operate with 5 MV peak voltage in the pulse-forming section. Recent operation has been above 6 MV. Critical items in the pulsed power system are the DC-charged Marx generators, oil-water barriers, laser-triggered gas switches, and the vacuum insulator. We will show major improvements to the laser-triggered gas switches, and the water-insulated pulse forming lines, as well as delivered current reproducibility results from user experiments on the machine.

More Details

Electrical and X-ray diagnostics on the NSTec 2-MA dense plasma focus system

IEEE International Pulsed Power Conference

Savage, Mark E.; Johns, Owen J.; Garcia, M.R.; Lake, Patrick W.; Moore, J.K.; Ormond, Eugene C.; Webb, Timothy J.; Bennett, N.; Gall, B.; Gardner, S.; Molnar, S.; Sipe, N.; Weber, T.; Olson, R.T.; Schmidt, A.

National Security Technologies (NSTec) is developing dense plasma focus (DPF) systems for applications requiring intense pulsed neutron sources. Sandia National Laboratories participated in a limited number of experiments with one of those systems. In collaboration with NSTec, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory, we installed additional electrical and X-ray image measurements in parallel with normal operation of the system. Dense plasma focus machines have been studied for decades, but much of the experimental interest has been on neutron and X-ray yield. The primary goal for the present work was to develop and field high-fidelity and traceably-calibrated current and voltage measurements for comparison to digital simulations. The secondary goals were to utilize the current and voltage measurements to add general understanding of vacuum insulator behavior and current sheath dynamics. We also conducted initial scoping studies of soft X-ray diagnostics. We will show the electrical diagnostics and the techniques used to acquire high-fidelity signals in the difficult environment of the 2 MA, 6 μ plasma focus drive pulse. We will show how we measure accreted plasma mass non-invasively, and the sensitivity to background fill density. We will present initial qualitative results from filtered X-ray pinhole images and spectroscopic data from the pinch region.

More Details

Impedance-matched Marx generators

Physical Review Accelerators and Beams

Stygar, William A.; Lechien, K.R.; Stoltzfus, Brian S.; Austin, Kevin N.; Breden, E.W.; Cuneo, M.E.; Hutsel, Brian T.; Lewis, Scot A.; Mazarakis, Michael G.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Reisman, David R.; Savage, Mark E.; Sceiford, Matthew S.; Wisher, Matthew L.

We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

More Details

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, M.E.; Davis, Jean-Paul D.; Hutsel, Brian T.; Jones, Michael J.; Jones, Peter A.; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; Mcdaniel, D.H.; McKee, George R.; Maenchen, J.E.; Owen, A.C.; Porter, John L.; Prestwich, K.R.; Schwarz, Jens S.; Sinars, Daniel S.; Stoltzfus, Brian S.; Struve, Kenneth W.; Stygar, William A.; Wakeland, P.; White, William M.

Abstract not provided.

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David R.; Stoltzfus, Brian S.; Austin, Kevin N.; Laros, James H.; Breden, E.W.; Cooper, R.A.; Cuneo, M.E.; Davis, Jean-Paul D.; Ennis, J.B.; Gard, Paul D.; Greiser, G.W.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter A.; Lechien, K.R.; Leckbee, Joshua L.; Lucero, Diego J.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth R.; Savage, Mark E.; Sceiford, Matthew S.; Spielman, R.B.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Awe, Thomas J.; Bailey, James E.; Breden, E.W.; Campbell, Edward M.; Cuneo, M.E.; Fehl, David L.; Gomez, Matthew R.; Hutsel, Brian T.; Jennings, Christopher A.; Jones, Michael J.; Jones, Peter A.; Knapp, Patrick K.; Lash, Joel S.; Leckbee, Joshua L.; Lewis, Sean M.; Long, Finis W.; Lucero, Diego J.; Martin, Matthew; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Peterson, Kyle J.; Porter, John L.; Reisman, David R.; Rochau, G.A.; Savage, Mark E.; Sceiford, Matthew S.; Schmit, Paul S.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Slutz, Stephen A.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Wisher, Matthew L.; Woodworth, J.R.

We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

More Details

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, Patrick K.; Schmit, Paul S.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel S.; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

Physical Review Special Topics - Accelerators and Beams

Waisman, E.M.; McBride, Ryan D.; Cuneo, M.E.; Wenger, D.F.; Fowler, W.E.; Johnson, W.A.; Basilio, Lorena I.; Coats, Rebecca S.; Jennings, C.A.; Sinars, Daniel S.; Vesey, Roger A.; Jones, Brent M.; Ampleford, David A.; Lemke, Raymond W.; Martin, M.R.; Schrafel, P.C.; Lewis, S.A.; Moore, James M.; Savage, Mark E.; Stygar, William A.

Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.

More Details

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines

Schwarz, Jens S.; Savage, Mark E.; Lucero, Diego J.; Jaramillo, Deanna M.; Seals, Kelly G.; Pitts, Todd A.; Hautzenroeder, Brenna M.; Laine, Mark R.; Karelitz, David B.; Porter, John L.

Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.

More Details

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; McBride, Ryan D.; Cuneo, M.E.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael J.; Knapp, Patrick K.; Mckenney, John M.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul S.; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund Y.; Tomlinson, Kurt; Schroen, Diana G.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

X-ray power and yield measurements at the refurbished Z machine

Review of Scientific Instruments

Jones, Brent M.; Ampleford, David A.; Cuneo, M.E.; Hohlfelder, Robert J.; Jennings, C.A.; Johnson, Drew J.; Jones, Brent M.; Lopez, M.R.; Macarthur, J.; Mills, Jerry A.; Preston, T.; Rochau, G.A.; Savage, Mark E.; Spencer, D.; Sinars, Daniel S.; Porter, J.L.

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources. © 2014 AIP Publishing LLC.

More Details

Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field

Physics of Plasmas

Awe, Thomas J.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Jones, Michael J.; Mckenney, John M.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; McBride, Ryan D.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Cuneo, M.E.

Abstract not provided.

Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field

Physical Review Letters

McBride, Ryan D.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Mckenney, John M.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Slutz, Stephen A.; Cuneo, M.E.; Owen, Albert C.; Sinars, Daniel S.

Novel experimental data are reported that reveal helical instability formation on imploding z -pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

More Details

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger L.; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael J.; Jones, Peter A.; Leckbee, Joshua L.; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego J.; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Nakhleh, Charles N.; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Cuneo, M.E.; Flicker, Dawn G.; Focia, Ronald J.

Abstract not provided.

Integration of MHD load models with circuit representations the Z generator

Ampleford, David A.; Savage, Mark E.; Moore, James M.; Jones, Brent M.; McBride, Ryan D.; Bailey, James E.; Jones, Michael J.; Gomez, Matthew R.; Cuneo, M.E.; Nakhleh, Charles N.; Stygar, William A.

MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

More Details

Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator

Review of Scientific Instruments

Strizic, Thomas S.; Johnson, Drew J.; Cunningham, Paul C.; Johns, Owen J.; Vigil, Marcelino V.; Jones, Brent M.; Ampleford, David A.; Savage, Mark E.; Cuneo, M.E.; Jones, Michael J.; Lamppa, Derek C.; Mckenney, John M.

Tests are ongoing to conduct ~20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D2 gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the ~2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

More Details

Determination of pressure and density of shocklessly compressed beryllium from x-ray radiography of a magnetically driven cylindrical liner implosion

AIP Conference Proceedings

Lemke, R.W.; Martin, M.R.; McBride, Ryan D.; Davis, Jean-Paul D.; Knudson, Marcus D.; Sinars, Daniel S.; Smith, Ian C.; Savage, Mark E.; Stygar, William A.; Killebrew, K.; Flicker, Dawn G.; Herrmann, Mark H.

We describe a technique for measuring the pressure and density of a metallic solid, shocklessly compressed to multi-megabar pressure, through x-ray radiography of a magnetically driven, cylindrical liner implosion. Shockless compression of the liner produces material states that correspond approximately to the principal compression isentrope (quasi-isentrope). This technique is used to determine the principal quasi-isentrope of solid beryllium to a peak pressure of 2.4 Mbar from x-ray images of a high current (20 MA), fast (∼100 ns) liner implosion. © 2012 American Institute of Physics.

More Details
Results 1–100 of 206
Results 1–100 of 206