Publications

Results 101–200 of 207

Search results

Jump to search filters

Strengthening mechanisms in directed energy deposited austenitic stainless steel

Acta Materialia

Smith, Thale; Sugar, Joshua D.; San Marchi, Chris; Schoenung, Julie M.

Microstructures and mechanical properties are evaluated in austenitic stainless steel structures fabricated by directed energy deposition (DED) considering the effects of applied loading orientation, build geometry, and distance from the deposition baseplate. Locations within an as-deposited build with different thermomechanical history display different yield strength, while those locations with similar history have approximately the same yield strength, regardless of test specimen orientation. Thermal expansion of deposited material near the baseplate is inhibited by the mechanical constraint imposed by the baseplate, promoting plastic deformation and producing a high density of dislocations. Concurrently, high initial cooling rates decrease away from the baseplate as the build is heated, causing an increased spacing of cellular solidification features. An analysis of strengthening mechanisms quantitatively established for the first time the important strengthening contribution of high dislocation densities in the materials (166–191 MPa) to yield strength that ranged from 438 to 553 MPa in the present DED fabricated structures. A newly adopted mechanistic relationship for microsegregation strengthening from the literature indicated an additional important contribution to strengthening (123–135 MPa) due to the cellular solidification features. These findings are corroborated by the measured evolution of microstructure and hardness caused by annealing the DED material. These results suggest that the mechanical properties of deposited austenitic stainless steels can be influenced by controlling thermomechanical history during the manufacturing process to alter the character of compositional microsegregation and the amount of induced plastic deformation.

More Details

Effects of extreme hydrogen environments on the fracture and fatigue behavior of additively manufactured stainless steels

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Smith, Thale; San Marchi, Chris; Sugar, Joshua D.; Balch, Dorian K.

Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermalprecharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, Robert A.; Argibay, Nicolas; Allen, Kyle; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad L.; Brown, Judith A.; Burchard, Ross L.; Chandross, Michael E.; Cook, Adam; Diantonio, Christopher; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis; Ivanoff, Thomas; Jared, Bradley H.; Johnson, Kyle L.; Kammler, Daniel; Koepke, Joshua R.; Kustas, Andrew B.; Lavin, Judith M.; Leathe, Nicholas S.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal; Martinez, Mario J.; Moser, Daniel R.; Rodgers, Theron M.; Seidl, D.T.; Brown-Shaklee, Harlan J.; Stanford, Joshua; Stender, Michael; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha; Trembacki, Bradley L.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling

Additive Manufacturing

Stender, Michael; Beghini, Lauren L.; Sugar, Joshua D.; Dagel, Daryl; Subia, Samuel R.; Veilleux, Michael G.; San Marchi, Chris; Brown, Arthur

This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, Robert A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David; Cook, Adam; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua; Boyce, Brad L.; Johnson, Kyle L.; Rodgers, Theron M.; Ford, Kurtis; Martinez, Mario J.; Moser, Daniel R.; Van Bloemen Waanders, Bart; Chandross, Michael E.; Abdeljawad, Fadi F.; Allen, Kyle; Stender, Michael; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas; Brown-Shaklee, Harlan J.; Kustas, Andrew B.; Sugar, Joshua D.; Kammler, Daniel; Wilson, Mark A.

Abstract not provided.

Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel

JOM

Smith, Thale; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris

Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure–property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.

More Details

Strong Photothermoelectric Response and Contact Reactivity of the Dirac Semimetal ZrTe5

ACS Applied Materials and Interfaces

Leonard, Francois; Yu, Wenlong; Celio, Kimberlee C.; Medlin, Douglas L.; Sugar, Joshua D.; Talin, Albert A.; Pan, Wei

The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.

More Details

Recrystallization Behavior of a Laser Additive Manufactured Austenitic Stainless Steel

JOM. Journal of the Minerals, Metals & Materials Society

Smith, Thale; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris

Directed energy deposition (DED) and forged austenitic stainless steels possess distinct microstructures, but may exhibit similar mechanical properties. In this study, annealing is used to evolve the microstructures of these materials, and scanning electron microscopy techniques are used to probe the similarities and differences of the microstructure-property relationships. A strong correlation between geometrically necessary dislocation (GND) density and hardness is observed for the forged material. Finally, a more complex relationship is observed in the DED material and is attributed to the thermally driven dissolution of the solidification microstructure.

More Details

Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

ACS Applied Materials and Interfaces

Benson, David M.; Tsang, Chu F.; Sugar, Joshua D.; Jagannathan, Kaushik; Robinson, David; El Gabaly, Farid; Cappillino, Patrick J.; Stickney, John L.

Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

More Details

Thermal mechanical finite element simulation of additive manufacturing; process modeling of the LENS process

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Stender, Michael; Beghini, Lauren L.; Veilleux, Michael G.; Subia, Samuel R.; Sugar, Joshua D.

Laser engineered net shaping (LENS) is an additive manufacturing process that presents a promising method of creating or repairing metal parts not previously feasible with traditional manufacturing methods. The LENS process involves the directed deposition of metal via a laser power source and a spray of metal powder co-located to create and feed a molten pool (also referred to generically as Directed Energy Deposition, DED). DED technologies are being developed for use in prototyping, repair, and manufacturing across a wide variety of materials including stainless steel, titanium, tungsten carbidecobalt, aluminum, and nickel based superalloys. However, barriers to the successful production and qualification of LENS produced or repaired parts remain. This work proposes a finite element (FE) analysis methodology capable of simulating the LENS process at the continuum length scale (i.e. part length scale). This method incorporates an element activation scheme wherein only elements that exceed the material melt temperature during laser heating are activated and carried through to subsequent analysis steps. Following the initial element activation calculation, newly deposited, or activated elements and the associated geometry, are carried through to thermal and mechanical analyses to calculate heat flow due to radiation, convection, and conduction as well as stresses and displacements. The final aim of this work is to develop a validated LENS process simulation capability that can accurately predict temperature history, final part shape, distribution of strength, microstructural properties, and residual stresses based on LENS process parameters.

More Details

Hydrogen Assisted Fracture of Stainless Steels

Sugar, Joshua D.; Somerday, Brian P.; Homer, Mark; Foulk, James W.; Matsuda, Junko

The Enhanced Surveillance Sub-program has an annual NNSA requirement to submit a comprehensive report on all our fiscal year activities right after the start of the next calendar year. As most of you know, we collate all of our PI task submissions into a single volume that we send to NNSA, our customers, and use for other programmatic purposes. The functional objective of this report is to formally document the purpose, status, and accomplishments and impacts of all our work. For your specific submission, please follow the instructions described below and use the template provided. These are essentially the same as was used last year. We recognize this report may also include information on specific age-related findings that you will provide again in a few months as input to the Stockpile Annual Assessment process (e.g., in the submittal of your Component Assessment Report). However, the related content of your ES AR input should provide an excellent foundation that can simply be updated as needed for your Annual Assessment input.

More Details

The Science of Battery Degradation

Sullivan, John P.; Fenton, Kyle R.; El Gabaly, Farid; Harris, Charles T.; Hayden, Carl C.; Hudak, Nicholas S.; Jungjohann, Katherine L.; Kliewer, Christopher; Leung, Kevin; Mcdaniel, Anthony H.; Nagasubramanian, Ganesan; Sugar, Joshua D.; Talin, Albert A.; Tenney, Craig M.; Zavadil, Kevin R.

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.

More Details

Obstacles to applications of nanostructured thermoelectric alloys

Frontiers in Chemistry

Sharma, Peter A.; Sugar, Joshua D.

A major theme in thermoelectric research is based on controlling the formation of nanostructures that occur naturally in bulk intermetallic alloys through various types of thermodynamic phase transformation processes (He et al., 2013). The question of how such nanostructures form and why they lead to a high thermoelectric figure of merit (zT) are scientifically interesting and worthy of attention. However, as we discuss in this opinion, any processing route based on thermodynamic phase transformations alone will be difficult to implement in thermoelectric applications where thermal stability and reliability are important. Attention should also be focused on overcoming these limitations through advanced post-processing techniques.

More Details
Results 101–200 of 207
Results 101–200 of 207