Publications

Results 3001–3200 of 9,998

Search results

Jump to search filters

Deploy threading in Nalu solver stack

Prokopenko, Andrey; Thomas, Stephen; Swirydowicz, Kasia; Ananthan, Shreyas; Hu, Jonathan J.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. The primary code in the ExaWind project is Nalu, which is an unstructured-grid solver for the acoustically-incompressible Navier-Stokes equations, and mass continuity is maintained through pressure projection. The model consists of the mass-continuity Poisson-type equation for pressure and a momentum equation for the velocity. For such modeling approaches, simulation times are dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge problem, the moving meshes greatly affect overall solver costs as re-initialization of matrices and re-computation of preconditioners is required at every time step.

More Details

Spoke-darts for high-dimensional blue-noise sampling

ACM Transactions on Graphics

Mitchell, Scott A.; Ebeida, Mohamed S.; Awad, Muhammad A.; Park, Chonhyon; Patney, Anjul; Rushdi, Ahmad A.; Swiler, Laura P.; Manocha, Dinesh; Wei, Li Y.

Blue noise sampling has proved useful for many graphics applications, but remains underexplored in high-dimensional spaces due to the difficulty of generating distributions and proving properties about them. We present a blue noise sampling method with good quality and performance across different dimensions. The method, spoke-dart sampling, shoots rays from prior samples and selects samples from these rays. It combines the advantages of two major high-dimensional sampling methods: the locality of advancing front with the dimensionality-reduction of hyperplanes, specifically line sampling. We prove that the output sampling is saturated with high probability, with bounds on distances between pairs of samples and between any domain point and its nearest sample. We demonstrate spoke-dart applications for approximate Delaunay graph construction, global optimization, and robotic motion planning. Both the blue-noise quality of the output distribution and the adaptability of the intermediate processes of our method are useful in these applications.

More Details

Open Source Software for HPC

Lacy, Susan L.; Plimpton, Steven J.

The computational power of HPC is beyond our comprehension when we hear that 5 quadrillion computations can happen in a matter of seconds, or that machine learning is changing the way everything works. But none of that happens in a vacuum, and the teams behind the scenes—the developers of the hardware, the operating systems, the data transfer protocols, and the applications themselves—are the unsung heroes of a world where faster is better and you'd better hope there's no bug in the software or the hardware to slow you down. HPC is most successful when all these aspects work together seamlessly. The stories that follow are a tribute to the hardworking teams behind the scenes.

More Details

Extending the accuracy of the SNAP interatomic potential form

Journal of Chemical Physics

Thompson, Aidan P.; Wood, Mitchell A.

The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.

More Details

Parameter covariance and non-uniqueness in material model calibration using the Virtual Fields Method

Computational Materials Science

Jones, Elizabeth M.; Carroll, Jay D.; Karlson, Kyle N.; Kramer, Sharlotte L.; Lehoucq, Richard B.; Reu, Phillip L.; Turner, Daniel Z.

Traditionally, material identification is performed using global load and displacement data from simple boundary-value problems such as uni-axial tensile and simple shear tests. More recently, however, inverse techniques such as the Virtual Fields Method (VFM) that capitalize on heterogeneous, full-field deformation data have gained popularity. In this work, we have written a VFM code in a finite-deformation framework for calibration of a viscoplastic (i.e. strain-rate dependent) material model for 304L stainless steel. Using simulated experimental data generated via finite-element analysis (FEA), we verified our VFM code and compared the identified parameters with the reference parameters input into the FEA. The identified material model parameters had surprisingly large error compared to the reference parameters, which was traced to parameter covariance and the existence of many essentially equivalent parameter sets. This parameter non-uniqueness and its implications for FEA predictions is discussed in detail. Lastly, we present two strategies to reduce parameter covariance – reduced parametrization of the material model and increased richness of the calibration data – which allow for the recovery of a unique solution.

More Details

Decrease time-to-solution through improved linear-system setup and solve (Milestone Report)

Hu, Jonathan J.; Thomas, Stephen; Dohrmann, Clark R.; Ananthan, Shreyas; Domino, Stefan P.; Williams, Alan B.; Sprague, Michael

The goal of the ExaWind project is to enable predictive simulations of wind farms composed of many MW-scale turbines situated in complex terrain. Predictive simulations will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines, and captures the rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources. We describe in this report our efforts to decrease the setup and solution time for the mass-continuity Poisson system with respect to the benchmark timing results reported in FY18 Q1. In particular, we investigate improving and evaluating two types of algebraic multigrid (AMG) preconditioners: Classical Ruge-Stfiben AMG (C-AMG) and smoothed-aggregation AMG (SA-AMG), which are implemented in the Hypre and Trilinos/MueLu software stacks, respectively.

More Details

A multitree approach for global solution of ACOPF problems using piecewise outer approximations

Computers and Chemical Engineering

Liu, Jianfeng; Bynum, Michael L.; Castillo, Anya; Watson, Jean-Paul W.; Laird, Carl D.

Electricity markets rely on the rapid solution of the optimal power flow (OPF) problem to determine generator power levels and set nodal prices. Traditionally, the OPF problem has been formulated using linearized, approximate models, ignoring nonlinear alternating current (AC) physics. These approaches do not guarantee global optimality or even feasibility in the real ACOPF problem. We introduce an outer-approximation approach to solve the ACOPF problem to global optimality based on alternating solution of upper- and lower-bounding problems. The lower-bounding problem is a piecewise relaxation based on strong second-order cone relaxations of the ACOPF, and these piecewise relaxations are selectively refined at each major iteration through increased variable domain partitioning. Our approach is able to efficiently solve all but one of the test cases considered to an optimality gap below 0.1%. Furthermore, this approach opens the door for global solution of MINLP problems with AC power flow equations.

More Details

A framework for modeling and optimizing dynamic systems under uncertainty

Computers and Chemical Engineering

Nicholson, Bethany L.; Siirola, John D.

Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming. We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.

More Details

Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU WBS 2.4, Milestone ECP-MT-1000

Voskuilen, Gwendolyn R.; Gimenez, Alfredo; Peng, Ivy; Moore, Shirley; Gokhale, Maya

In HIHE01-1, "Evaluate a PathForward/Facilities memory-relevant performance study/analysis," we conducted a focused study on the performance differences between HBM2 and HBM3 as revealed through execution of representative benchmarks. We used measurements on an existing many-core system, Knight's Landing (KNL), to calibrate simulator settings, and then performed Structural Simulation Toolkit (SST) simulations of KNL-like CPUs that access future high bandwidth memories. This report documents our findings.

More Details

Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization

SIAM/ASA Journal on Uncertainty Quantification

Kouri, Drew P.; Surowiec, Thomas M.

Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. Here in this paper, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Lastly, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.

More Details

VoroCrust illustrated: Theory and challenges

Leibniz International Proceedings in Informatics, LIPIcs

Abdelkader, Ahmed; Bajaj, Chandrajit L.; Ebeida, Mohamed S.; Mahmoud, Ahmed H.; Mitchell, Scott A.; Owens, John D.; Rushdi, Ahmad A.

Over the past decade, polyhedral meshing has been gaining popularity as a better alternative to tetrahedral meshing in certain applications. Within the class of polyhedral elements, Voronoi cells are particularly attractive thanks to their special geometric structure. What has been missing so far is a Voronoi mesher that is sufficiently robust to run automatically on complex models. In this video, we illustrate the main ideas behind the VoroCrust algorithm, highlighting both the theoretical guarantees and the practical challenges imposed by realistic inputs.

More Details

VoroCrust illustrated: Theory and challenges

Leibniz International Proceedings in Informatics, LIPIcs

Abdelkader, Ahmed; Bajaj, Chandrajit L.; Ebeida, Mohamed S.; Mahmoud, Ahmed H.; Mitchell, Scott A.; Owens, John D.; Rushdi, Ahmad A.

Over the past decade, polyhedral meshing has been gaining popularity as a better alternative to tetrahedral meshing in certain applications. Within the class of polyhedral elements, Voronoi cells are particularly attractive thanks to their special geometric structure. What has been missing so far is a Voronoi mesher that is sufficiently robust to run automatically on complex models. In this video, we illustrate the main ideas behind the VoroCrust algorithm, highlighting both the theoretical guarantees and the practical challenges imposed by realistic inputs.

More Details

Accelerated architectures create programming opportunities

Computer

DeBenedictis, Erik

In the early 2000s, industry switched to multicore microprocessors to address semiconductors' speed and power limits. However, the change was unsuccessful, leading to dire claims that 'Moore's law is ending.' This column suggests that while the approach was sound, it needed a deeper architectural transformation. Industry has since discovered a suitable architecture, but work remains on software to support it.

More Details

Sampling conditions for conforming voronoi meshing by the vorocrust algorithm

Leibniz International Proceedings in Informatics, LIPIcs

Abdelkader, Ahmed; Bajaj, Chandrajit L.; Ebeida, Mohamed S.; Mahmoud, Ahmed H.; Mitchell, Scott A.; Owens, John D.; Rushdi, Ahmad A.

We study the problem of decomposing a volume bounded by a smooth surface into a collection of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from α-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the surface, yielding the first provably-correct algorithm for this problem. Given an ϵ-sample on the bounding surface, with a weak σ-sparsity condition, we work with the balls of radius δ times the local feature size centered at each sample. The corners of this union of balls are the Voronoi sites, on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface. For appropriate values of ϵ, σ and δ, we prove that the surface reconstruction is isotopic to the bounding surface. With the surface protected, the enclosed volume can be further decomposed into an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume by either structured grids or random samples.

More Details

Robust state estimation of feeding–blending systems in continuous pharmaceutical manufacturing

Chemical Engineering Research and Design

Liu, Jianfeng; Su, Qinglin; Moreno, Mariana; Laird, Carl D.; Nagy, Zoltan; Reklaitis, Gintaras

State estimation is a fundamental part of monitoring, control, and real-time optimization in continuous pharmaceutical manufacturing. For nonlinear dynamic systems with hard constraints, moving horizon estimation (MHE) can estimate the current state by solving a well-defined optimization problem where process complexities are explicitly considered as constraints. Traditional MHE techniques assume random measurement noise governed by some normal distributions. However, state estimates can be unreliable if noise is not normally distributed or measurements are contaminated with gross or systematic errors. To improve the accuracy and robustness of state estimation, we incorporate robust estimators within the standard MHE skeleton, leading to an extended MHE framework. The proposed MHE approach is implemented on two pharmaceutical continuous feeding–blending system (FBS) configurations which include loss-in-weight (LIW) feeders and continuous blenders. Numerical results show that our MHE approach is robust to gross errors and can provide reliable state estimates when measurements are contaminated with outliers and drifts. Moreover, the efficient solution of the MHE realized in this work, suggests feasible application of on-line state estimation on more complex continuous pharmaceutical processes.

More Details

Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

LIPIcs-Leibniz International Proceedings in Informatics

Abdelkader, Ahmed; Bajaja, Chandrajit L.; Ebeida, Mohamed S.; Mahmoud, Ahmed H.; Mitchell, Scott A.; Owens, John D.; Rushdi, Ahmad A.

© Ahmed Abdelkader, Chandrajit L. Bajaj, Mohamed S. Ebeida, Ahmed H. Mahmoud, Scott A. Mitchell, John D. Owens and Ahmad A. Rushdi; licensed under Creative Commons License CC-BY 34th Symposium on Computational Geometry (SoCG 2018). We study the problem of decomposing a volume bounded by a smooth surface into a collection of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from α-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the surface, yielding the first provably-correct algorithm for this problem. Given an ϵ-sample on the bounding surface, with a weak σ-sparsity condition, we work with the balls of radius δ times the local feature size centered at each sample. The corners of this union of balls are the Voronoi sites, on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface. For appropriate values of ϵ, σ and δ, we prove that the surface reconstruction is isotopic to the bounding surface. With the surface protected, the enclosed volume can be further decomposed into an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume by either structured grids or random samples.

More Details

Remote Distributed Vibration Sensing Through Opaque Media Using Permanent Magnets

IEEE Transactions on Magnetics

Mazumdar, Anirban; van Bloemen Waanders, Bart G.; Bond, Stephen D.; Nemer, Martin N.

Vibration sensing is critical for a variety of applications from structural fatigue monitoring to understanding the modes of airplane wings. In particular, remote sensing techniques are needed for measuring the vibrations of multiple points simultaneously, assessing vibrations inside opaque metal vessels, and sensing through smoke clouds and other optically challenging environments. In this paper, we propose a method which measures high-frequency displacements remotely using changes in the magnetic field generated by permanent magnets. We leverage the unique nature of vibration tracking and use a calibrated local model technique developed specifically to improve the frequency-domain estimation accuracy. The results show that two-dimensional local models surpass the dipole model in tracking high-frequency motions. A theoretical basis for understanding the effects of electronic noise and error due to correlated variables is generated in order to predict the performance of experiments prior to implementation. Simultaneous measurements of up to three independent vibrating components are shown. The relative accuracy of the magnet-based displacement tracking with respect to the video tracking ranges from 40 to 190 μ m when the maximum displacements approach ±5 mm and when sensor-to-magnet distances vary from 25 to 36 mm. Last, vibration sensing inside an opaque metal vessel and mode shape changes due to damage on an aluminum beam are also studied using the wireless permanent-magnet vibration sensing scheme.

More Details

Dynamic tuning of seismic signal detector trigger levels for local networks

Bulletin of the Seismological Society of America

Draelos, Timothy J.; Peterson, Matthew G.; Knox, Hunter A.; Lawry, Benjamin J.; Phillips-Alonge, Kristin E.; Ziegler, Abra E.; Chael, Eric P.; Young, Christopher J.; Faust, Aleksandra

The quality of automatic signal detections from sensor networks depends on individual detector trigger levels (TLs) from each sensor. The largely manual process of identifying effective TLs is painstaking and does not guarantee optimal configuration settings, yet achieving superior automatic detection of signals and ultimately, events, is closely related to these parameters. We present a Dynamic Detector Tuning (DDT) system that automatically adjusts effective TL settings for signal detectors to the current state of the environment by leveraging cooperation within a local neighborhood of network sensors. After a stabilization period, the DDT algorithm can adapt in near-real time to changing conditions and automatically tune a signal detector to identify (detect) signals from only events of interest. Our current work focuses on reducing false signal detections early in the seismic signal processing pipeline, which leads to fewer false events and has a significant impact on reducing analyst time and effort. This system provides an important new method to automatically tune detector TLs for a network of sensors and is applicable to both existing sensor performance boosting and new sensor deployment. With ground truth on detections from a local neighborhood of seismic sensors within a network monitoring the Mount Erebus volcano in Antarctica, we show that DDT reduces the number of false detections by 18% and the number of missed detections by 11% when compared with optimal fixed TLs for all sensors.

More Details

Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

Journal of Computational Physics

Mabuza, Sibusiso M.; Shadid, John N.; Kuzmin, Dmitri

The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank–Nicolson scheme and backward Euler scheme are utilized.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Results 3001–3200 of 9,998
Results 3001–3200 of 9,998